
django-downloadview Documentation
Release 1.2

Benoît Bryon

October 28, 2013

Contents

i

ii

django-downloadview Documentation, Release 1.2

Django-DownloadView provides generic views to make Django serve files.

It can serve files from models, storages, local filesystem, arbitrary URL... and even generated files.

For increased performances, it can delegate the actual streaming to a reverse proxy, via mechanisms such as Nginx’s
X-Accel.

Contents 1

django-downloadview Documentation, Release 1.2

2 Contents

CHAPTER 1

Example

In some urls.py, serve files managed in a model:

from django.conf.urls import url, url_patterns
from django_downloadview import ObjectDownloadView
from demoproject.download.models import Document # A model with a FileField

ObjectDownloadView inherits from django.views.generic.BaseDetailView.
download = ObjectDownloadView.as_view(model=Document, file_field=’file’)

url_patterns = (’’,
url(’^download/(?P<slug>[A-Za-z0-9_-]+)/$’, download, name=’download’),

)

More examples in the “demo” documentation!

3

django-downloadview Documentation, Release 1.2

4 Chapter 1. Example

CHAPTER 2

Views

Several views are provided to cover frequent use cases:

• ObjectDownloadView when you have a model with a file field.

• StorageDownloadView when you manage files in a storage.

• PathDownloadView when you have an absolute filename on local filesystem.

• HTTPDownloadView when you have an URL (the resource is proxied).

• VirtualDownloadView when you the file is generated on the fly.

See “views” documentation for details.

See also “optimizations” documentation to get increased performances.

5

django-downloadview Documentation, Release 1.2

6 Chapter 2. Views

CHAPTER 3

Ressources

• Documentation: http://django-downloadview.readthedocs.org

• PyPI page: http://pypi.python.org/pypi/django-downloadview

• Code repository: https://github.com/benoitbryon/django-downloadview

• Bugtracker: https://github.com/benoitbryon/django-downloadview/issues

• Continuous integration: https://travis-ci.org/benoitbryon/django-downloadview

7

http://django-downloadview.readthedocs.org
http://pypi.python.org/pypi/django-downloadview
https://github.com/benoitbryon/django-downloadview
https://github.com/benoitbryon/django-downloadview/issues
https://travis-ci.org/benoitbryon/django-downloadview

django-downloadview Documentation, Release 1.2

8 Chapter 3. Ressources

CHAPTER 4

Contents

4.1 Demo project

The demo/ folder holds a demo project to illustrate django-downloadview usage.

4.1.1 Browse demo code online

See demo folder in project’s repository 1.

4.1.2 Deploy the demo

System requirements:

• Python 2 version 2.6 or 2.7, available as python command.

Note: You may use Virtualenv 3 to make sure the active python is the right one.

• make and wget to use the provided Makefile.

Execute:

git clone git@github.com:benoitbryon/django-downloadview.git
cd django-downloadview/
make demo

It installs and runs the demo server on localhost, port 8000. So have a look at http://localhost:8000/

Note: If you cannot execute the Makefile, read it and adapt the few commands it contains to your needs.

Browse and use demo/demoproject/ as a sandbox.
1 https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/
2 http://python.org
3 http://virtualenv.org

9

https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/
http://python.org
http://virtualenv.org
http://localhost:8000/
https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/
http://python.org
http://virtualenv.org

django-downloadview Documentation, Release 1.2

4.1.3 Base example provided in the demo

In the “demoproject” project, there is an application called “download”.

demo/demoproject/settings.py:

STATIC_URL = ’/static/’

Applications.
INSTALLED_APPS = (

Standard Django applications.
’django.contrib.auth’,
’django.contrib.contenttypes’,
’django.contrib.sessions’,
’django.contrib.sites’,
’django.contrib.messages’,
’django.contrib.staticfiles’,
The actual django-downloadview demo.
’demoproject’,
’demoproject.download’, # Sample standard download views.
’demoproject.nginx’, # Sample optimizations for Nginx.
For test purposes. The demo project is part of django-downloadview

This application holds a Document model.

demo/demoproject/download/models.py:

from django.db import models

class Document(models.Model):
"""A sample model with a FileField."""
slug = models.SlugField(verbose_name=’slug’)
file = models.FileField(verbose_name=’file’, upload_to=’document’)

Note: The storage is the default one, i.e. it uses settings.MEDIA_ROOT. Combined to this upload_to
configuration, files for Document model live in var/media/document/ folder, relative to your django-
downloadview clone root.

There is a download view named “download_document” for this model:

demo/demoproject/download/urls.py:

coding=utf8
"""URL mapping."""
from django.conf.urls import patterns, url

urlpatterns = patterns(
’demoproject.download.views’,
Model-based downloads.
url(r’^document/(?P<slug>[a-zA-Z0-9_-]+)/$’,

’download_document’,
name=’document’),

Storage-based downloads.
url(r’^storage/(?P<path>[a-zA-Z0-9_-]+\.[a-zA-Z0-9]{1,4})$’,

’download_fixture_from_storage’,
name=’fixture_from_storage’),

10 Chapter 4. Contents

django-downloadview Documentation, Release 1.2

Path-based downloads.
url(r’^hello-world\.txt$’,

’download_hello_world’,
name=’hello_world’),

url(r’^hello-world-inline\.txt$’,
’download_hello_world_inline’,
name=’hello_world_inline’),

url(r’^path/(?P<path>[a-zA-Z0-9_-]+\.[a-zA-Z0-9]{1,4})$’,
’download_fixture_from_path’,
name=’fixture_from_path’),

URL-based downloads.
url(r’^http/readme\.txt$’,

’download_http_hello_world’,
name=’http_hello_world’),

Generated downloads.
url(r’^generated/hello-world\.txt$’,

’download_generated_hello_world’,
name=’generated_hello_world’),

)

As is, Django is to serve the files, i.e. load chunks into memory and stream them.

4.1.4 References

4.2 Installation

This project is open-source, published under BSD license. See License for details.

If you want to install a development environment, you should go to Contributing to the project documentation.

Install the package with your favorite Python installer. As an example, with pip:

pip install django-downloadview

Note: Since version 1.1, django-downloadview requires Django>=1.5, which provides StreamingHttpResponse.

There is no need to register this application in your Django’s INSTALLED_APPS setting.

Next, you’ll have to setup some download view(s). See demo project for examples, and API documentation.

Optionally, you may setup additional server optimizations.

4.3 Download views

This section contains narrative overview about class-based views provided by django-downloadview.

By default, all of those views would stream the file to the client. But keep in mind that you can setup Optimizations to
delegate actual streaming to a reverse proxy.

4.3.1 DownloadMixin

The django_downloadview.views.DownloadMixin class is not a view. It is a base class which you can
inherit of to create custom download views.

4.2. Installation 11

django-downloadview Documentation, Release 1.2

DownloadMixin is a base of BaseDownloadView, which itself is a base of all other django_downloadview’s builtin
views.

4.3.2 BaseDownloadView

The django_downloadview.views.BaseDownloadView class is a base class to create download views. It
inherits DownloadMixin and django.views.generic.base.View.

The only thing it does is to implement get: it triggers DownloadMixin’s render_to_response.

4.3.3 ObjectDownloadView

The django_downloadview.views.ObjectDownloadView class-based view allows you to serve files
given a model with some file fields such as FileField or ImageField.

Use this view anywhere you could use Django’s builtin ObjectDetailView.

Some options allow you to store file metadata (size, content-type, ...) in the model, as deserialized fields.

4.3.4 StorageDownloadView

The django_downloadview.views.StorageDownloadView class-based view allows you to serve files
given a storage and a path.

Use this view when you manage files in a storage (which is a good practice), unrelated to a model.

4.3.5 PathDownloadView

The django_downloadview.views.PathDownloadView class-based view allows you to serve files given
an absolute path on local filesystem.

Two main use cases:

• as a shortcut. This dead-simple view is straight to call, so you can use it to simplify code in more complex
views, provided you have an absolute path to a local file.

• override. Extend django_downloadview.views.PathDownloadView and override
django_downloadview.views.PathDownloadView:get_path().

4.3.6 HTTPDownloadView

The django_downloadview.views.HTTPDownloadView class-based view allows you to serve files given
an URL. That URL is supposed to be downloadable from the Django server.

Use it when you want to setup a proxy to remote files:

• the Django view filters input and computes target URL.

• if you setup optimizations, Django itself doesn’t proxies the file,

• but, as a fallback, Django uses requests 4 to proxy the file.

Extend django_downloadview.views.HTTPDownloadView then override
django_downloadview.views.HTTPDownloadView:get_url().

4 https://pypi.python.org/pypi/requests

12 Chapter 4. Contents

https://pypi.python.org/pypi/requests
https://pypi.python.org/pypi/requests

django-downloadview Documentation, Release 1.2

4.3.7 VirtualDownloadView

The django_downloadview.views.VirtualDownloadView class-based view allows you to serve files
that don’t live on disk.

Use it when you want to stream a file which content is dynamically generated or which lives in memory.

References

4.4 Optimizations

Some reverse proxies allow applications to delegate actual download to the proxy:

• with Django, manage permissions, generate files...

• let the reverse proxy serve the file.

As a result, you get increased performance: reverse proxies are more efficient than Django at serving static files.

4.4.1 Nginx

If you serve Django behind Nginx, then you can delegate the file download service to Nginx and get increased perfor-
mance:

• lower resources used by Python/Django workers ;

• faster download.

See Nginx X-accel documentation 5 for details.

Configure some download view

Let’s start in the situation described in the demo application:

• a project “demoproject”

• an application “demoproject.download”

• a django_downloadview.views.ObjectDownloadView view serves files of a “Document” model.

We are to make it more efficient with Nginx.

Note: Examples below are taken from the demo project.

Write tests

Use django_downloadview.nginx.assert_x_accel_redirect() function as a shortcut in your tests.

demo/demoproject/nginx/tests.py:

5 http://wiki.nginx.org/X-accel

4.4. Optimizations 13

http://wiki.nginx.org/X-accel
http://wiki.nginx.org/X-accel

django-downloadview Documentation, Release 1.2

"""Test suite for demoproject.nginx."""
from django.core.files import File
from django.core.urlresolvers import reverse_lazy as reverse

from django_downloadview.nginx import assert_x_accel_redirect
from django_downloadview.test import temporary_media_root

from demoproject.download.models import Document
from demoproject.download.tests import DownloadTestCase

class XAccelRedirectDecoratorTestCase(DownloadTestCase):
@temporary_media_root()
def test_response(self):

"""’download_document_nginx’ view returns a valid X-Accel response."""
document = Document.objects.create(

slug=’hello-world’,
file=File(open(self.files[’hello-world.txt’])),

)
download_url = reverse(’download_document_nginx’,

kwargs={’slug’: ’hello-world’})
response = self.client.get(download_url)
self.assertEquals(response.status_code, 200)
Validation shortcut: assert_x_accel_redirect.
assert_x_accel_redirect(

self,
response,
content_type="text/plain; charset=utf-8",
charset="utf-8",
basename="hello-world.txt",
redirect_url="/download-optimized/document/hello-world.txt",
expires=None,
with_buffering=None,
limit_rate=None)

Check some more items, because this test is part of
django-downloadview tests.
self.assertFalse(’ContentEncoding’ in response)
self.assertEquals(response[’Content-Disposition’],

’attachment; filename=hello-world.txt’)

class InlineXAccelRedirectTestCase(DownloadTestCase):
@temporary_media_root()
def test_response(self):

"""X-Accel optimization respects ‘‘attachment‘‘ attribute."""
document = Document.objects.create(

slug=’hello-world’,
file=File(open(self.files[’hello-world.txt’])),

)
download_url = reverse(’download_document_nginx_inline’,

kwargs={’slug’: ’hello-world’})
response = self.client.get(download_url)
assert_x_accel_redirect(

self,
response,
content_type="text/plain; charset=utf-8",
charset="utf-8",
attachment=False,

14 Chapter 4. Contents

django-downloadview Documentation, Release 1.2

redirect_url="/download-optimized/document/hello-world.txt",
expires=None,
with_buffering=None,
limit_rate=None)

Right now, this test should fail, since you haven’t implemented the view yet.

Setup Django

At the end of this setup, the test should pass, but you still have to setup Nginx!

You have two options: global setup with a middleware, or per-view setup with decorators.

Global delegation, with XAccelRedirectMiddleware

If you want to delegate all file downloads to Nginx, then use django_downloadview.nginx.XAccelRedirectMiddleware.

Register it in your settings:

MIDDLEWARE_CLASSES = (
...
’django_downloadview.nginx.XAccelRedirectMiddleware’,
...

)

Setup the middleware:

NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_ROOT = MEDIA_ROOT # Could be elsewhere.
NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_URL = ’/proxied-download’

Optionally fine-tune the middleware. Default values are None, which means “use Nginx’s defaults”.

NGINX_DOWNLOAD_MIDDLEWARE_EXPIRES = False # Force no expiration.
NGINX_DOWNLOAD_MIDDLEWARE_WITH_BUFFERING = False # Force buffering off.
NGINX_DOWNLOAD_MIDDLEWARE_LIMIT_RATE = False # Force limit rate off.

Local delegation, with x_accel_redirect decorator

If you want to delegate file downloads to Nginx on a per-view basis, then use
django_downloadview.nginx.x_accel_redirect() decorator.

demo/demoproject/nginx/views.py:

"""Views."""
from django.conf import settings

from django_downloadview.nginx import x_accel_redirect

from demoproject.download import views

download_document_nginx = x_accel_redirect(
views.download_document,
source_dir=’/var/www/files’,
destination_url=’/download-optimized’)

4.4. Optimizations 15

django-downloadview Documentation, Release 1.2

download_document_nginx_inline = x_accel_redirect(
views.download_document_inline,
source_dir=settings.MEDIA_ROOT,
destination_url=’/download-optimized’)

And use it in som URL conf, as an example in demo/demoproject/nginx/urls.py:

"""URL mapping."""
from django.conf.urls import patterns, url

urlpatterns = patterns(
’demoproject.nginx.views’,
url(r’^document-nginx/(?P<slug>[a-zA-Z0-9_-]+)/$’,

’download_document_nginx’, name=’download_document_nginx’),
url(r’^document-nginx-inline/(?P<slug>[a-zA-Z0-9_-]+)/$’,

’download_document_nginx_inline’,
name=’download_document_nginx_inline’),

)

Note: In real life, you’d certainly want to replace the “download_document” view instead of registering a new view.

Setup Nginx

See Nginx X-accel documentation 1 for details.

Here is what you could have in /etc/nginx/sites-available/default:

charset utf-8;

Django-powered service.
upstream frontend {

server 127.0.0.1:8000 fail_timeout=0;
}

server {
listen 80 default;

File-download proxy.
#
Will serve /var/www/files/myfile.tar.gz when passed URI
like /optimized-download/myfile.tar.gz
#
See http://wiki.nginx.org/X-accel
and https://github.com/benoitbryon/django-downloadview
location /proxied-download {

internal;
Location to files on disk.
See Django’s settings.NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_ROOT
alias /var/www/files/;

}

Proxy to Django-powered frontend.
location / {

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;

16 Chapter 4. Contents

http://wiki.nginx.org/X-accel

django-downloadview Documentation, Release 1.2

proxy_redirect off;
proxy_pass http://frontend;

}
}

... where specific configuration is the location /optimized-download section.

Note: /proxied-download is not available for the client, i.e. users won’t be able to download files via
/optimized-download/<filename>.

Warning: Make sure Nginx can read the files to download! Check permissions.

Common issues

Unknown charset "utf-8" to override

Add charset utf-8; in your nginx configuration file.

open() "path/to/something" failed (2: No such file or directory)

Check your settings.NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_ROOT in Django configuration VS alias
in nginx configuration: in a standard configuration, they should be equal.

References

Currently, only nginx’s X-Accel 6 is supported, but contributions are welcome 7!

4.4.2 How does it work?

The feature is inspired by Django’s TemplateResponse 8: the download views return some
django_downloadview.response.DownloadResponse instance. Such a response doesn’t contain
file data.

By default, at the end of Django’s request/response handling, Django is to iterate over the content attribute of the
response. In a DownloadResponse, this content attribute is a file wrapper.

It means that decorators and middlewares are given an opportunity to capture the
DownloadResponse before the content of the file is loaded into memory As an example,
django_downloadview.nginx.XAccelRedirectMiddleware replaces DownloadResponse in-
tance by some django_downloadview.nginx.XAccelRedirectResponse.

6 http://wiki.nginx.org/X-accel
7 https://github.com/benoitbryon/django-downloadview/issues?labels=optimizations
8 https://docs.djangoproject.com/en/1.5/ref/template-response/

4.4. Optimizations 17

http://wiki.nginx.org/X-accel
https://github.com/benoitbryon/django-downloadview/issues?labels=optimizations
https://docs.djangoproject.com/en/1.5/ref/template-response/
http://wiki.nginx.org/X-accel
https://github.com/benoitbryon/django-downloadview/issues?labels=optimizations
https://docs.djangoproject.com/en/1.5/ref/template-response/

django-downloadview Documentation, Release 1.2

References

4.5 Testing download views

This project includes shortcuts to simplify testing.

See django_downloadview.test for details.

4.6 API

Here is API documentation, generated from code.

4.6.1 django_downloadview

django_downloadview Package

django_downloadview Package

django-downloadview provides generic download views for Django.

decorators Module

View decorators.

See also decorators provided by server-specific modules, such as django_downloadview.nginx.x_accel_redirect().

class django_downloadview.decorators.DownloadDecorator(middleware_factory)
Bases: object

View decorator factory to apply middleware to view_func response.

Middleware instance is built from middleware_factory with *args and **kwargs. Middleware fac-
tory is typically a class, such as some django_downloadview.middlewares.XAccelMiddleware
subclass.

Response is built from view, then the middleware’s process_response method is applied on response.

files Module

File wrappers for use as exchange data between views and responses.

class django_downloadview.files.HTTPFile(request_factory=<function get at 0x35ad848>,
url=’‘, name=u’‘, **kwargs)

Bases: django.core.files.base.File

Wrapper for files that live on remote HTTP servers.

Acts as a proxy.

Uses https://pypi.python.org/pypi/requests.

Always sets “stream=True” in requests kwargs.

18 Chapter 4. Contents

https://pypi.python.org/pypi/requests

django-downloadview Documentation, Release 1.2

file

request

size
Return the total size, in bytes, of the file.

Reads response’s “content-length” header.

class django_downloadview.files.StorageFile(storage, name, file=None)
Bases: django.core.files.base.File

A file in a Django storage.

This class looks like django.db.models.fields.files.FieldFile, but unrelated to model in-
stance.

accessed_time
Return the last accessed time (as datetime object) of the file.

Proxy to self.storage.accessed_time(self.name).

created_time
Return the creation time (as datetime object) of the file.

Proxy to self.storage.created_time(self.name).

delete()
Delete the specified file from the storage system.

Proxy to self.storage.delete(self.name).

exists()
Return True if file already exists in the storage system.

If False, then the name is available for a new file.

file
Required by django.core.files.utils.FileProxy.

modified_time
Return the last modification time (as datetime object) of the file.

Proxy to self.storage.modified_time(self.name).

open(mode=’rb’)
Retrieves the specified file from storage and return open() result.

Proxy to self.storage.open(self.name, mode).

path
Return a local filesystem path which is suitable for open().

Proxy to self.storage.path(self.name).

May raise NotImplementedError if storage doesn’t support file access with Python’s built-in open() func-
tion

save(content)
Saves new content to the file.

Proxy to self.storage.save(self.name).

The content should be a proper File object, ready to be read from the beginning.

4.6. API 19

django-downloadview Documentation, Release 1.2

size
Return the total size, in bytes, of the file.

Proxy to self.storage.size(self.name).

url
Return an absolute URL where the file’s contents can be accessed.

Proxy to self.storage.url(self.name).

class django_downloadview.files.VirtualFile(file=None, name=u’‘, url=’‘, size=None)
Bases: django.core.files.base.File

Wrapper for files that live in memory.

size

middlewares Module

Base material for download middlewares.

class django_downloadview.middlewares.BaseDownloadMiddleware
Bases: object

Base (abstract) Django middleware that handles download responses.

Subclasses must implement process_download_response() method.

is_download_response(response)
Return True if response can be considered as a file download.

By default, this method uses django_downloadview.response.is_download_response().
Override this method if you want a different behaviour.

process_download_response(request, response)
Handle file download response.

process_response(request, response)
Call process_download_response() if response is download.

nginx Module

Optimizations for Nginx.

See also Nginx X-accel documentation and narrative documentation about Nginx optimizations.

class django_downloadview.nginx.BaseXAccelRedirectMiddleware(source_dir=None,
source_url=None,
destination_url=None,
expires=None,
with_buffering=None,
limit_rate=None,
media_root=None,
media_url=None)

Bases: django_downloadview.middlewares.BaseDownloadMiddleware

Configurable middleware, for use in decorators or in global middlewares.

Standard Django middlewares are configured globally via settings. Instances of this class
are to be configured individually. It makes it possible to use this class as the factory in
django_downloadview.decorators.DownloadDecorator.

20 Chapter 4. Contents

http://wiki.nginx.org/X-accel

django-downloadview Documentation, Release 1.2

get_redirect_url(response)
Return redirect URL for file wrapped into response.

is_download_response(response)
Return True for DownloadResponse, except for “virtual” files.

This implementation can’t handle files that live in memory or which are to be dynamically iterated over.
So, we capture only responses whose file attribute have either an URL or a file name.

process_download_response(request, response)
Replace DownloadResponse instances by NginxDownloadResponse ones.

django_downloadview.nginx.DEFAULT_DESTINATION_URL = None
Default value for settings.NGINX_DOWNLOAD_MIDDLEWARE_DESTINATION_URL.

django_downloadview.nginx.DEFAULT_EXPIRES = None
Default value for X-Accel-Limit-Expires header. Also default value for
settings.NGINX_DOWNLOAD_MIDDLEWARE_EXPIRES.

See http://wiki.nginx.org/X-accel#X-Accel-Limit-Expires

Default value is None, which means “let Nginx choose”, i.e. use Nginx defaults or specific configuration.

If set to False, Nginx buffering is disabled. Else, it indicates the expiration delay, in seconds.

django_downloadview.nginx.DEFAULT_LIMIT_RATE = None
Default value for X-Accel-Limit-Rate header. Also default value for
settings.NGINX_DOWNLOAD_MIDDLEWARE_LIMIT_RATE.

See http://wiki.nginx.org/X-accel#X-Accel-Limit-Rate

Default value is None, which means “let Nginx choose”, i.e. use Nginx defaults or specific configuration.

If set to False, Nginx limit rate is disabled. Else, it indicates the limit rate in bytes.

django_downloadview.nginx.DEFAULT_SOURCE_DIR = ‘’
Default value for settings.NGINX_DOWNLOAD_MIDDLEWARE_SOURCE_DIR.

django_downloadview.nginx.DEFAULT_SOURCE_URL = ‘’
Default value for settings.NGINX_DOWNLOAD_MIDDLEWARE_SOURCE_URL.

django_downloadview.nginx.DEFAULT_WITH_BUFFERING = None
Default value for X-Accel-Buffering header. Also default value for
settings.NGINX_DOWNLOAD_MIDDLEWARE_WITH_BUFFERING.

See http://wiki.nginx.org/X-accel#X-Accel-Limit-Buffering

Default value is None, which means “let Nginx choose”, i.e. use Nginx defaults or specific configuration.

If set to False, Nginx buffering is disabled. If set to True, Nginx buffering is enabled.

class django_downloadview.nginx.XAccelRedirectMiddleware
Bases: django_downloadview.nginx.BaseXAccelRedirectMiddleware

Apply X-Accel-Redirect globally, via Django settings.

Available settings are:

NGINX_DOWNLOAD_MIDDLEWARE_SOURCE_URL: The string at the beginning of URLs to replace
with NGINX_DOWNLOAD_MIDDLEWARE_DESTINATION_URL. If None, then URLs aren’t captured.
Defaults to settings.MEDIA_URL.

NGINX_DOWNLOAD_MIDDLEWARE_SOURCE_DIR: The string at the beginning of filenames (path) to
replace with NGINX_DOWNLOAD_MIDDLEWARE_DESTINATION_URL. If None, then filenames aren’t
captured. Defaults to settings.MEDIA_ROOT.

4.6. API 21

http://wiki.nginx.org/X-accel#X-Accel-Limit-Expires
http://wiki.nginx.org/X-accel#X-Accel-Limit-Rate
http://wiki.nginx.org/X-accel#X-Accel-Limit-Buffering

django-downloadview Documentation, Release 1.2

NGINX_DOWNLOAD_MIDDLEWARE_DESTINATION_URL: The base URL where requests are prox-
ied to. If None an ImproperlyConfigured exception is raised.

Note: The following settings are deprecated since version 1.1. URLs can be used as redirection source since
1.1, and then “MEDIA_ROOT” and “MEDIA_URL” became too confuse.

NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_ROOT: Replaced by NGINX_DOWNLOAD_MIDDLEWARE_SOURCE_DIR.

NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_URL: Replaced by NGINX_DOWNLOAD_MIDDLEWARE_DESTINATION_URL.

class django_downloadview.nginx.XAccelRedirectResponse(redirect_url, con-
tent_type, base-
name=None, expires=None,
with_buffering=None,
limit_rate=None, attach-
ment=True)

Bases: django.http.response.HttpResponse

Http response that delegates serving file to Nginx.

class django_downloadview.nginx.XAccelRedirectValidator
Bases: object

Utility class to validate XAccelRedirectResponse instances.

See also assert_x_accel_redirect() shortcut function.

assert_attachment(test_case, response, value)

assert_basename(test_case, response, value)

assert_charset(test_case, response, value)

assert_content_type(test_case, response, value)

assert_expires(test_case, response, value)

assert_limit_rate(test_case, response, value)

assert_redirect_url(test_case, response, value)

assert_with_buffering(test_case, response, value)

assert_x_accel_redirect_response(test_case, response)

django_downloadview.nginx.assert_x_accel_redirect(test_case, response, **assertions)
Make test_case assert that response is a XAccelRedirectResponse.

Optional assertions dictionary can be used to check additional items:

•basename: the basename of the file in the response.

•content_type: the value of “Content-Type” header.

•redirect_url: the value of “X-Accel-Redirect” header.

•charset: the value of X-Accel-Charset header.

•with_buffering: the value of X-Accel-Buffering header. If False, then makes sure that the
header disables buffering. If None, then makes sure that the header is not set.

•expires: the value of X-Accel-Expires header. If False, then makes sure that the header disables
expiration. If None, then makes sure that the header is not set.

•limit_rate: the value of X-Accel-Limit-Rate header. If False, then makes sure that the header
disables limit rate. If None, then makes sure that the header is not set.

22 Chapter 4. Contents

django-downloadview Documentation, Release 1.2

django_downloadview.nginx.x_accel_redirect = <django_downloadview.decorators.DownloadDecorator object at 0x388d150>
Apply BaseXAccelRedirectMiddleware to view_func response.

Proxies additional arguments (*args, **kwargs) to BaseXAccelRedirectMiddleware constructor
(expires, with_buffering, and limit_rate).

response Module

HttpResponse subclasses.

class django_downloadview.response.DownloadResponse(file_instance, attachment=True,
basename=None, status=200,
content_type=None)

Bases: django.http.response.StreamingHttpResponse

File download response.

content attribute is supposed to be a file object wrapper, which makes this response “lazy”.

default_headers
Return dictionary of automatically-computed headers.

Uses an internal _default_headers cache. Default values are computed if only cache hasn’t been set.

get_basename()
Return basename.

get_charset()
Return the charset of the file to serve.

get_content_type()
Return a suitable “Content-Type” header for self.file.

get_encoding()
Return encoding of the file to serve.

get_mime_type()
Return mime-type of the file.

items()
Return iterable of (header, value).

This method is called by http handlers just before WSGI’s start_response() is called... but it is not called
by django.test.ClientHandler! :’(

django_downloadview.response.is_download_response(response)
Return True if response is a download response.

Current implementation returns True if response is an instance of
django_downloadview.response.DownloadResponse.

test Module

Testing utilities.

class django_downloadview.test.DownloadResponseValidator
Bases: object

Utility class to validate DownloadResponse instances.

assert_attachment(test_case, response, value)

4.6. API 23

django-downloadview Documentation, Release 1.2

assert_basename(test_case, response, value)

assert_content(test_case, response, value)

assert_content_type(test_case, response, value)

assert_download_response(test_case, response)

assert_mime_type(test_case, response, value)

django_downloadview.test.assert_download_response(test_case, response, **assertions)
Make test_case assert that response is a DownloadResponse.

Optional assertions dictionary can be used to check additional items:

•basename: the basename of the file in the response.

•content_type: the value of “Content-Type” header.

•charset: the value of X-Accel-Charset header.

•content: the content of the file to be downloaded.

class django_downloadview.test.temporary_media_root(**kwargs)
Bases: django.test.utils.override_settings

Context manager or decorator to override settings.MEDIA_ROOT.

>>> from django_downloadview.test import temporary_media_root
>>> from django.conf import settings
>>> global_media_root = settings.MEDIA_ROOT
>>> with temporary_media_root():
... global_media_root == settings.MEDIA_ROOT
False
>>> global_media_root == settings.MEDIA_ROOT
True

>>> @temporary_media_root()
... def use_temporary_media_root():
... return settings.MEDIA_ROOT
>>> tmp_media_root = use_temporary_media_root()
>>> global_media_root == tmp_media_root
False
>>> global_media_root == settings.MEDIA_ROOT
True

disable()
Remove directory settings.MEDIA_ROOT then restore original setting.

enable()
Create a temporary directory and use it to override settings.MEDIA_ROOT.

utils Module

Utility functions.

django_downloadview.utils.content_type_to_charset(content_type)
Return charset part of content-type header.

>>> from django_downloadview.utils import content_type_to_charset
>>> content_type_to_charset(’text/html; charset=utf-8’)
’utf-8’

24 Chapter 4. Contents

django-downloadview Documentation, Release 1.2

views Module

Views.

class django_downloadview.views.BaseDownloadView(**kwargs)
Bases: django_downloadview.views.DownloadMixin, django.views.generic.base.View

get(request, *args, **kwargs)
Handle GET requests: stream a file.

class django_downloadview.views.DownloadMixin
Bases: object

Placeholders and base implementation to create file download views.

Note: This class does not inherit from django.views.generic.base.View.

The get_file() method is a placeholder subclasses must implement. Base implementation raises
NotImplementedError.

Other methods provide a base implementation that use the file wrapper returned by get_file().

attachment = True
Whether to return the response as attachment or not.

basename = None
Client-side filename, if only file is returned as attachment.

download_response(*args, **kwargs)
Return DownloadResponse instance.

get_basename()

get_file()
Return a file wrapper instance.

not_modified_response(*args, **kwargs)
Return django.http.HttpResponseNotModified instance.

render_to_response(*args, **kwargs)
Return a download response.

Respects the “HTTP_IF_MODIFIED_SINCE” header if any. In that case, uses
was_modified_since() and not_modified_response().

Else, uses download_response() to return a download response.

response_class
Response class, to be used in render_to_response().

alias of DownloadResponse

was_modified_since(file_instance, since)
Return True if file_instance was modified after since.

Uses file wrapper’s was_modified_since if available, with value of since as positional argument.

Else, fallbacks to default implementation, which uses django.views.static.was_modified_since().

Django’s was_modified_since function needs a datetime and a size. It is passed modified_time
and size attributes from file wrapper. If file wrapper does not support these attributes

4.6. API 25

django-downloadview Documentation, Release 1.2

(AttributeError or NotImplementedError is raised), then the file is considered as modified
and True is returned.

class django_downloadview.views.HTTPDownloadView(**kwargs)
Bases: django_downloadview.views.BaseDownloadView

Proxy files that live on remote servers.

get_file()
Return wrapper which has an url attribute.

get_request_factory()
Return request factory to perform actual HTTP request.

get_request_kwargs()
Return keyword arguments for use with request factory.

get_url()
Return remote file URL (the one we are proxying).

request_kwargs = {}
Additional keyword arguments for request handler.

url = u’‘
URL to download (the one we are proxying).

class django_downloadview.views.ObjectDownloadView(**kwargs)
Bases: django_downloadview.views.DownloadMixin, django.views.generic.detail.BaseDetailView

Download view for models which contain a FileField.

This class extends BaseDetailView, so you can use its arguments to target the instance to operate on: slug,
slug_kwarg, model, queryset... See Django’s DetailView reference for details.

In addition to BaseDetailView arguments, you can set arguments related to the file to be downloaded.

The main one is file_field.

The other arguments are provided for convenience, in case your model holds some (deserialized) metadata about
the file, such as its basename, its modification time, its MIME type... These fields may be particularly handy if
your file storage is not the local filesystem.

basename_field = None
Optional name of the model’s attribute which contains the basename.

charset_field = None
Optional name of the model’s attribute which contains the charset.

encoding_field = None
Optional name of the model’s attribute which contains the encoding.

file_field = ‘file’
Name of the model’s attribute which contains the file to be streamed. Typically the name of a FileField.

get_basename()
Return client-side filename.

get_file()
Return FieldFile instance.

mime_type_field = None
Optional name of the model’s attribute which contains the MIME type.

modification_time_field = None
Optional name of the model’s attribute which contains the modification

26 Chapter 4. Contents

django-downloadview Documentation, Release 1.2

size_field = None
Optional name of the model’s attribute which contains the size.

class django_downloadview.views.PathDownloadView(**kwargs)
Bases: django_downloadview.views.BaseDownloadView

Serve a file using filename.

get_file()
Use path to return wrapper around file to serve.

get_path()
Return actual path of the file to serve.

Default implementation simply returns view’s path.

Override this method if you want custom implementation. As an example, path could be relative and
your custom get_path() implementation makes it absolute.

path = None
Server-side name (including path) of the file to serve.

Filename is supposed to be an absolute filename of a file located on the local filesystem.

path_url_kwarg = ‘path’
Name of the URL argument that contains path.

class django_downloadview.views.StorageDownloadView(**kwargs)
Bases: django_downloadview.views.PathDownloadView

Serve a file using storage and filename.

get_file()
Use path and storage to return wrapper around file to serve.

get_path()
Return path of the file to serve, relative to storage.

Default implementation simply returns view’s path.

Override this method if you want custom implementation.

path = None
Path to the file to serve relative to storage.

storage = <django.core.files.storage.DefaultStorage object at 0x280ea90>
Storage the file to serve belongs to.

class django_downloadview.views.VirtualDownloadView(**kwargs)
Bases: django_downloadview.views.BaseDownloadView

Serve not-on-disk or generated-on-the-fly file.

Use this class to serve StringIO files.

Override the get_file() method to customize file wrapper.

get_file()
Return wrapper.

was_modified_since(file_instance, since)
Delegate to file wrapper’s was_modified_since, or return True.

This is the implementation of an edge case: when files are generated on the fly, we cannot guess whether
they have been modified or not. If the file wrapper implements was_modified_since()method, then
we trust it. Otherwise it is safer to suppose that the file has been modified.

4.6. API 27

django-downloadview Documentation, Release 1.2

This behaviour prevents file size to be computed on the Django side. Because computing file size means
iterating over all the file contents, and we want to avoid that whenever possible. As an example, it could
reduce all the benefits of working with dynamic file generators... which is a major feature of virtual files.

4.7 About django-downloadview

4.7.1 Alternatives and related projects

This document presents other projects that provide similar or complementary functionalities. It focuses on differences
with django-downloadview.

Django’s static file view

Django has a builtin static file view 9. It can stream files. As explained in Django documentation, it is designed for
development purposes. For production, static files’d better be served by some optimized server.

Django-downloadview can replace Django’s builtin static file view:

• perform actions with Django when receiving download requests: check permissions, generate files, gzip, log-
ging, signals...

• delegate actual download to a reverse proxy for increased performance.

• disable optimization middlewares or decorators in development, if you want to serve files with Django.

django-sendfile

django-sendfile 10 is a wrapper around web-server specific methods for sending files to web clients.

API is made of a single sendfile() function, which returns a download response. The download response type
depends on the chosen backend, which could be Django, Lighttpd’s X-Sendfile, Nginx’s X-Accel...

It seems that django-senfile main focus is simplicity: you call the sendfile() method inside your views.

Django-downloadview main focus is reusability: you configure (or override) class-based views depending on the use
case.

As of 2012-04-11, django-sendfile (version 0.3.2) seems quite popular and may be a good alternative provided
you serve files that live in local filesystem, because the sendfile() method only accepts filenames relative to
local filesystem (i.e. using os.path.exists).

Django-downloadview (since version 1.1) handles file wrappers, and thus allows you to serve files from more locations:

• models,

• storages,

• local filesystem,

• remote URL (using requests 11),

• in-memory (or generated) files (such as StringIO),

• ... and your custom ones with little efforts.

9 https://docs.djangoproject.com/en/1.4/ref/contrib/staticfiles/#static-file-development-view
10 http://pypi.python.org/pypi/django-sendfile
11 https://pypi.python.org/pypi/requests

28 Chapter 4. Contents

https://docs.djangoproject.com/en/1.4/ref/contrib/staticfiles/#static-file-development-view
http://pypi.python.org/pypi/django-sendfile
https://pypi.python.org/pypi/requests
https://docs.djangoproject.com/en/1.4/ref/contrib/staticfiles/#static-file-development-view
http://pypi.python.org/pypi/django-sendfile
https://pypi.python.org/pypi/requests

django-downloadview Documentation, Release 1.2

django-private-files

django-private-files 12 provides utilities for controlling access to static files based on conditions you can specify within
your Django application.

django-protected-files

django-protected-files 13 is a Django application that lets you serve protected static files via your frontend server after
authorizing the user against django.contrib.auth.

As of 2012-12-10, this project seems inactive.

References

4.7.2 License

Copyright (c) 2012, Benoît Bryon. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of django-downloadview nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

4.7.3 Authors & contributors

Maintainer: Benoît Bryon <benoit@marmelune.net>

Original code by Novapost team:

• Nicolas Tobo <https://github.com/nicolastobo>

• Lauréline Guérin <https://github.com/zebuline>

• Gregory Tappero <https://github.com/coulix>

• Benoît Bryon <benoit@marmelune.net>

12 http://pypi.python.org/pypi/django-private-files
13 https://github.com/lincolnloop/django-protected-files

4.7. About django-downloadview 29

http://pypi.python.org/pypi/django-private-files
https://github.com/lincolnloop/django-protected-files
mailto:benoit@marmelune.net
http://www.novapost.fr
https://github.com/nicolastobo
https://github.com/zebuline
https://github.com/coulix
mailto:benoit@marmelune.net
http://pypi.python.org/pypi/django-private-files
https://github.com/lincolnloop/django-protected-files

django-downloadview Documentation, Release 1.2

• Rémy Hubscher <remy.hubscher@novapost.fr>

4.7.4 Changelog

1.2 (2013-05-28)

Bugfixes and documentation improvements.

• Bug #26 - Prevented computation of virtual file’s size, unless the file wrapper implements was_modified_since()
method.

• Bug #34 - Improved support of files that do not implement modification time.

• Bug #35 - Fixed README conversion from reStructuredText to HTML (PyPI).

1.1 (2013-04-11)

Various improvements. Contains backward incompatible changes.

• Added HTTPDownloadView to proxy to arbitrary URL.

• Added VirtualDownloadView to support files living in memory.

• Using StreamingHttpResponse introduced with Django 1.5. Makes Django 1.5 a requirement!

• Added django_downloadview.test.assert_download_response utility.

• Download views and response now use file wrappers. Most logic around file attributes, formerly in views,
moved to wrappers.

• Replaced DownloadView by PathDownloadView and StorageDownloadView. Use the right one depending on
the use case.

1.0 (2012-12-04)

• Introduced optimizations for Nginx X-Accel: a middleware and a decorator

• Introduced generic views: DownloadView and ObjectDownloadView

• Initialized project

4.8 Contributing to the project

This document provides guidelines for people who want to contribute to the project.

4.8.1 Create tickets

Please use the bugtracker 14 before starting some work:

• check if the bug or feature request has already been filed. It may have been answered too!

• else create a new ticket.

• if you plan to contribute, tell us, so that we are given an opportunity to give feedback as soon as possible.

14 https://github.com/benoitbryon/django-downloadview/issues

30 Chapter 4. Contents

mailto:remy.hubscher@novapost.fr
https://github.com/benoitbryon/django-downloadview/issues
https://github.com/benoitbryon/django-downloadview/issues

django-downloadview Documentation, Release 1.2

• Then, in your commit messages, reference the ticket with some refs #TICKET-ID syntax.

4.8.2 Fork and branch

• Work in forks and branches.

• Prefix your branch with the ticket ID corresponding to the issue. As an example, if you are working on ticket
#23 which is about contribute documentation, name your branch like 23-contribute-doc.

• If you work in a development branch and want to refresh it with changes from master, please rebase 15 or
merge-based rebase 16, i.e. don’t merge master.

4.8.3 Setup a development environment

System requirements:

• Python 17 version 2.6 or 2.7, available as python command.

Note: You may use Virtualenv 18 to make sure the active python is the right one.

• make and wget to use the provided Makefile.

Execute:

git clone git@github.com:benoitbryon/django-downloadview.git
cd django-downloadview/
make develop

If you cannot execute the Makefile, read it and adapt the few commands it contains to your needs.

4.8.4 The Makefile

A Makefile is provided to ease development. Use it to:

• setup the development environment: make develop

• update it, as an example, after a pull: make update

• run tests: make test

• build documentation: make documentation

The Makefile is intended to be a live reference for the development environment.

4.8.5 Documentation

Follow style guide for Sphinx-based documentations 19 when editing the documentation.

15 http://git-scm.com/book/en/Git-Branching-Rebasing
16 http://tech.novapost.fr/psycho-rebasing-en.html
17 http://python.org
18 http://virtualenv.org
19 http://documentation-style-guide-sphinx.readthedocs.org/

4.8. Contributing to the project 31

http://git-scm.com/book/en/Git-Branching-Rebasing
http://tech.novapost.fr/psycho-rebasing-en.html
http://python.org
http://virtualenv.org
http://documentation-style-guide-sphinx.readthedocs.org/
http://git-scm.com/book/en/Git-Branching-Rebasing
http://tech.novapost.fr/psycho-rebasing-en.html
http://python.org
http://virtualenv.org
http://documentation-style-guide-sphinx.readthedocs.org/

django-downloadview Documentation, Release 1.2

4.8.6 Test and build

Use the Makefile.

4.8.7 Demo project included

The Demo project is part of the tests. Maintain it along with code and documentation.

4.8.8 References

32 Chapter 4. Contents

Python Module Index

d
django_downloadview.__init__, ??
django_downloadview.decorators, ??
django_downloadview.files, ??
django_downloadview.middlewares, ??
django_downloadview.nginx, ??
django_downloadview.response, ??
django_downloadview.test, ??
django_downloadview.utils, ??
django_downloadview.views, ??

33

