

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-downloadview 1.4 documentation

django-downloadview

django-downloadview makes it easy to serve files with Django:

	you manage files with Django (permissions, search, generation, ...);

	files are stored somewhere or generated somehow (local filesystem, remote
storage, memory...);

	django-downloadview helps you stream the files with very little code;

	django-downloadview helps you improve performances with reverse proxies,
via mechanisms such as Nginx’s X-Accel.

Example

Let’s serve a file stored in a FileField of some model:

from django.conf.urls import url, url_patterns
from django_downloadview import ObjectDownloadView
from demoproject.download.models import Document # A model with a FileField

ObjectDownloadView inherits from django.views.generic.BaseDetailView.
download = ObjectDownloadView.as_view(model=Document, file_field='file')

url_patterns = ('',
 url('^download/(?P<slug>[A-Za-z0-9_-]+)/$', download, name='download'),
)

Ressources

	Documentation: http://django-downloadview.readthedocs.org

	PyPI page: http://pypi.python.org/pypi/django-downloadview

	Code repository: https://github.com/benoitbryon/django-downloadview

	Bugtracker: https://github.com/benoitbryon/django-downloadview/issues

	Continuous integration: https://travis-ci.org/benoitbryon/django-downloadview

	Roadmap: https://github.com/benoitbryon/django-downloadview/issues/milestones

Contents

	Overview, concepts

	Install

	Configure

	Setup views

	Optimize streaming
	Nginx

	Write tests

	Write healthchecks

	File wrappers

	Responses

	Demo project

	About django-downloadview
	Vision

	Alternatives and related projects

	License

	Authors & contributors

	Changelog

	Contributing to the project

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Overview, concepts

Given:

	you manage files with Django (permissions, search, generation, ...)

	files are stored somewhere or generated somehow (local filesystem, remote
storage, memory...)

As a developer, you want to serve files quick and efficiently.

Here is an overview of django-downloadview‘s answer...

Generic views cover commons patterns

Choose the generic view depending on the file you want to serve:

	ObjectDownloadView: file field in a model;

	StorageDownloadView: file in a storage;

	PathDownloadView: absolute filename on local filesystem;

	HTTPDownloadView: URL (the resource is proxied);

	VirtualDownloadView: bytes, text, StringIO [http://docs.python.org/2.7/library/stringio.html#StringIO.StringIO], generated
file...

Generic views and mixins allow easy customization

If your use case is a bit specific, you can easily extend the views above or
create your own based on mixins.

Views return DownloadResponse

Views return DownloadResponse. It is
a special django.http.StreamingHttpResponse [http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse] where content is
encapsulated in a file wrapper.

Learn more in Responses.

DownloadResponse carry file wrapper

Views instanciate a file wrapper and use it to initialize
responses.

File wrappers describe files: they carry files properties such as name,
size, encoding...

File wrappers implement loading and iterating over file content. Whenever
possible, file wrappers do not embed file data, in order to save memory.

Learn more about available file wrappers in File wrappers.

Middlewares convert DownloadResponse into ProxiedDownloadResponse

Before WSGI application use file wrapper to load file contents, middlewares
(or decorators) are given the opportunity to capture
DownloadResponse instances.

Let’s take this opportunity to optimize file loading and streaming!

A good optimization it to delegate streaming to a reverse proxy, such as
nginx [http://nginx.org] [1] via X-Accel [http://wiki.nginx.org/X-accel] [2] internal redirects.

django_downloadview provides middlewares that convert
DownloadResponse into
ProxiedDownloadResponse.

Learn more in Optimize streaming.

Testing matters

django-downloadview also helps you test the views you customized.

You may also write healthchecks to make sure everything
goes fine in live environments.

What’s next?

Let’s install django-downloadview.

Notes & references

	[1]	http://nginx.org

	[2]	http://wiki.nginx.org/X-accel

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Install

Note

If you want to install a development environment, please see Contributing to the project.

System requirements:

	Python 2.7

Install the package with your favorite Python installer. As an example, with
pip:

pip install django-downloadview

Installing django-downloadview will automatically trigger the installation of
the following requirements:

REQUIREMENTS = ['setuptools', 'Django>=1.5', 'requests']

Note

Since version 1.1, django-downloadview requires Django>=1.5, which provides
StreamingHttpResponse [http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse].

Known good set of versions

django-downloadview has been tested in an environment with the following set
of versions. If something is going wrong with other versions, please report it
in django-downloadview’s bugtracker [https://github.com/benoitbryon/django-downloadview/issues] [1].

bpython = 0.12
collective.recipe.omelette = 0.16
coverage = 3.7
Django = 1.6
django-nose = 1.2
docutils = 0.11
evg.recipe.activate = 0.5
Jinja2 = 2.7.1
MarkupSafe = 0.18
mock = 1.0.1
nose = 1.3.0
Pygments = 1.6
python-termstyle = 0.1.10
rednose = 0.4.1
requests = 2.0.1
Sphinx = 1.1.3
sphinxcontrib-testbuild = 0.1.3
z3c.recipe.mkdir = 0.6
zc.recipe.egg = 2.0.1
zest.releaser = 3.47

Notes & references

See also

	Configure

	Changelog

	License

	[1]	https://github.com/benoitbryon/django-downloadview/issues

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Configure

Here is the list of settings used by django-downloadview.

INSTALLED_APPS

There is no need to register this application in your Django’s
INSTALLED_APPS setting.

MIDDLEWARE_CLASSES

If you plan to setup reverse-proxy optimizations, add
django_downloadview.SmartDownloadMiddleware to MIDDLEWARE_CLASSES.
It is a response middleware. Move it after middlewares that compute the
response content such as gzip middleware.

Example:

MIDDLEWARE_CLASSES = [
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django_downloadview.SmartDownloadMiddleware'
]

DOWNLOADVIEW_BACKEND

This setting is used by
SmartDownloadMiddleware.
It is the import string of a callable (typically a class) of an optimization
backend (typically a BaseDownloadMiddleware
subclass).

Example:

DOWNLOADVIEW_BACKEND = 'django_downloadview.nginx.XAccelRedirectMiddleware'

See Optimize streaming for a list of available backends (middlewares).

When django_downloadview.SmartDownloadMiddleware is in your
MIDDLEWARE_CLASSES, this setting must be explicitely configured (no default
value). Else, you can ignore this setting.

DOWNLOADVIEW_RULES

This setting is used by
SmartDownloadMiddleware.
It is a list of positional arguments or keyword arguments that will be used to
instanciate class mentioned as DOWNLOADVIEW_BACKEND.

Each item in the list can be either a list of positional arguments, or a
dictionary of keyword arguments. One item cannot contain both positional and
keyword arguments.

Here is an example containing one rule using keyword arguments:

DOWNLOADVIEW_RULES = [
 {'source_url': '/media/nginx/',
 'destination_url': '/nginx-optimized-by-middleware/'},
]

See Optimize streaming for details about builtin backends
(middlewares) and their options.

When django_downloadview.SmartDownloadMiddleware is in your
MIDDLEWARE_CLASSES, this setting must be explicitely configured (no default
value). Else, you can ignore this setting.

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Setup views

Setup views depending on your needs:

	ObjectDownloadView when you have a model with a file field;

	StorageDownloadView when you manage files in a storage;

	PathDownloadView when you have an absolute filename on local filesystem;

	HTTPDownloadView when you have an URL (the resource is proxied);

	VirtualDownloadView when you generate a file dynamically;

	bases and mixins to make your own.

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Optimize streaming

Some reverse proxies allow applications to delegate actual download to the
proxy:

	with Django, manage permissions, generate files...

	let the reverse proxy serve the file.

As a result, you get increased performance: reverse proxies are more efficient
than Django at serving static files.

The setup depends on the reverse proxy:

	Nginx

Note

Currently, only nginx’s X-Accel [http://wiki.nginx.org/X-accel] [1] is supported, but contributions are
welcome [https://github.com/benoitbryon/django-downloadview/issues?labels=optimizations] [2]!

How does it work?

View return some DownloadResponse
instance, which itself carries a file wrapper.

django-downloadview provides response middlewares and decorators that are
able to capture DownloadResponse
instances and convert them to
ProxiedDownloadResponse.

Note

The feature is inspired by Django's TemplateResponse [http://docs.djangoproject.com/en/1.5/ref/template-response/#module-django.template.response]

Notes & references

	[1]	http://wiki.nginx.org/X-accel

	[2]	https://github.com/benoitbryon/django-downloadview/issues?labels=optimizations

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

 	Optimize streaming

Nginx

If you serve Django behind Nginx, then you can delegate the file streaming
to Nginx and get increased performance:

	lower resources used by Python/Django workers ;

	faster download.

See Nginx X-accel documentation [http://wiki.nginx.org/X-accel] [1] for details.

Given a view

Let’s consider the following view:

import os

from django.conf import settings
from django.core.files.storage import FileSystemStorage

from django_downloadview import StorageDownloadView

storage_dir = os.path.join(settings.MEDIA_ROOT, 'nginx')
storage = FileSystemStorage(location=storage_dir,
 base_url=''.join([settings.MEDIA_URL, 'nginx/']))

optimized_by_middleware = StorageDownloadView.as_view(storage=storage,
 path='hello-world.txt')

What is important here is that the files will have an url property
implemented by storage. Let’s setup an optimization rule based on that URL.

Note

It is generally easier to setup rules based on URL rather than based on
name in filesystem. This is because path is generally relative to storage,
whereas URL usually contains some storage identifier, i.e. it is easier to
target a specific location by URL rather than by filesystem name.

Setup XAccelRedirect middlewares

Make sure django_downloadview.SmartDownloadMiddleware is in
MIDDLEWARE_CLASSES of your Django settings.

Example:

MIDDLEWARE_CLASSES = [
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django_downloadview.SmartDownloadMiddleware'
]

Then set django_downloadview.nginx.XAccelRedirectMiddleware as
DOWNLOADVIEW_BACKEND:

DOWNLOADVIEW_BACKEND = 'django_downloadview.nginx.XAccelRedirectMiddleware'

Then register as many DOWNLOADVIEW_RULES as you wish:

DOWNLOADVIEW_RULES = [
 {'source_url': '/media/nginx/',
 'destination_url': '/nginx-optimized-by-middleware/'},
]

Each item in DOWNLOADVIEW_RULES is a dictionary of keyword arguments passed
to the middleware factory. In the example above, we capture responses by
source_url and convert them to internal redirects to destination_url.

	
class django_downloadview.nginx.middlewares.XAccelRedirectMiddleware(source_dir=None, source_url=None, destination_url=None, expires=None, with_buffering=None, limit_rate=None, media_root=None, media_url=None)

	Bases: django_downloadview.middlewares.ProxiedDownloadMiddleware

Configurable middleware, for use in decorators or in global middlewares.

Standard Django middlewares are configured globally via settings. Instances
of this class are to be configured individually. It makes it possible to
use this class as the factory in
django_downloadview.decorators.DownloadDecorator.

	
get_redirect_url(response)

	Return redirect URL for file wrapped into response.

	
is_download_response(response)

	Return True for DownloadResponse, except for “virtual” files.

This implementation cannot handle files that live in memory or which
are to be dynamically iterated over. So, we capture only responses
whose file attribute have either an URL or a file name.

	
process_response(request, response)

	Call process_download_response() if response is download.

	
process_download_response(request, response)

	Replace DownloadResponse instances by NginxDownloadResponse ones.

Per-view setup with x_accel_redirect decorator

Middlewares should be enough for most use cases, but you may want per-view
configuration. For nginx, there is x_accel_redirect:

	
django_downloadview.nginx.decorators.x_accel_redirect(view_func, *args, **kwargs)

	Apply
XAccelRedirectMiddleware to
view_func.

Proxies (*args, **kwargs) to middleware constructor.

As an example:

import os

from django.conf import settings
from django.core.files.storage import FileSystemStorage

from django_downloadview import StorageDownloadView
from django_downloadview.nginx import x_accel_redirect

optimized_by_decorator = x_accel_redirect(
 StorageDownloadView.as_view(storage=storage, path='hello-world.txt'),
 source_url=storage.base_url,
 destination_url='/nginx-optimized-by-decorator/')

Test responses with assert_x_accel_redirect

Use assert_x_accel_redirect()
function as a shortcut in your tests.

import os

from django.core.files.base import ContentFile
from django.core.urlresolvers import reverse
import django.test

from django_downloadview.nginx import assert_x_accel_redirect

from demoproject.nginx.views import storage, storage_dir

def setup_file():
 if not os.path.exists(storage_dir):
 os.makedirs(storage_dir)
 storage.save('hello-world.txt', ContentFile(u'Hello world!\n'))

class OptimizedByMiddlewareTestCase(django.test.TestCase):
 def test_response(self):
 """'nginx:optimized_by_middleware' returns X-Accel response."""
 setup_file()
 url = reverse('nginx:optimized_by_middleware')
 response = self.client.get(url)
 assert_x_accel_redirect(
 self,
 response,
 content_type="text/plain; charset=utf-8",
 charset="utf-8",
 basename="hello-world.txt",
 redirect_url="/nginx-optimized-by-middleware/hello-world.txt",
 expires=None,
 with_buffering=None,
 limit_rate=None)

class OptimizedByDecoratorTestCase(django.test.TestCase):
 def test_response(self):
 """'nginx:optimized_by_decorator' returns X-Accel response."""
 setup_file()
 url = reverse('nginx:optimized_by_decorator')
 response = self.client.get(url)
 assert_x_accel_redirect(
 self,
 response,
 content_type="text/plain; charset=utf-8",
 charset="utf-8",
 basename="hello-world.txt",
 redirect_url="/nginx-optimized-by-decorator/hello-world.txt",
 expires=None,
 with_buffering=None,
 limit_rate=None)

	
django_downloadview.nginx.tests.assert_x_accel_redirect(test_case, response, **assertions)

	Make test_case assert that response is a XAccelRedirectResponse.

Optional assertions dictionary can be used to check additional items:

	basename: the basename of the file in the response.

	content_type: the value of “Content-Type” header.

	redirect_url: the value of “X-Accel-Redirect” header.

	charset: the value of X-Accel-Charset header.

	with_buffering: the value of X-Accel-Buffering header.
If False, then makes sure that the header disables buffering.
If None, then makes sure that the header is not set.

	expires: the value of X-Accel-Expires header.
If False, then makes sure that the header disables expiration.
If None, then makes sure that the header is not set.

	limit_rate: the value of X-Accel-Limit-Rate header.
If False, then makes sure that the header disables limit rate.
If None, then makes sure that the header is not set.

The tests above assert the Django part is OK. Now let’s configure nginx.

Setup Nginx

See Nginx X-accel documentation [http://wiki.nginx.org/X-accel] [1] for details.

Here is what you could have in /etc/nginx/sites-available/default:

charset utf-8;

Django-powered service.
upstream frontend {
 server 127.0.0.1:8000 fail_timeout=0;
}

server {
 listen 80 default;

 # File-download proxy.
 #
 # Will serve /var/www/files/myfile.tar.gz when passed URI
 # like /optimized-download/myfile.tar.gz
 #
 # See http://wiki.nginx.org/X-accel
 # and https://django-downloadview.readthedocs.org
 #
 location /proxied-download {
 internal;
 # Location to files on disk.
 alias /var/www/files/;
 }

 # Proxy to Django-powered frontend.
 location / {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_pass http://frontend;
 }
}

... where specific configuration is the location /optimized-download
section.

Note

/proxied-download has the internal flag, so this location is not
available for the client, i.e. users are not able to download files via
/optimized-download/<filename>.

Assert everything goes fine with healthchecks

Healthchecks are the best way to check the complete
setup.

Common issues

Unknown charset "utf-8" to override

Add charset utf-8; in your nginx configuration file.

open() "path/to/something" failed (2: No such file or directory)

Check your settings.NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_ROOT in Django
configuration VS alias in nginx configuration: in a standard configuration,
they should be equal.

References

	[1]	(1, 2) http://wiki.nginx.org/X-accel

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Write tests

django_downloadview embeds test utilities:

	temporary_media_root()

	assert_download_response()

	setup_view()

	assert_x_accel_redirect()

temporary_media_root

	
django_downloadview.test.temporary_media_root(**kwargs)

	Temporarily override settings.MEDIA_ROOT with a temporary directory.

The temporary directory is automatically created and destroyed.

Use this function as a context manager:

>>> from django_downloadview.test import temporary_media_root
>>> from django.conf import settings
>>> global_media_root = settings.MEDIA_ROOT
>>> with temporary_media_root():
... global_media_root == settings.MEDIA_ROOT
False
>>> global_media_root == settings.MEDIA_ROOT
True

Or as a decorator:

>>> @temporary_media_root()
... def use_temporary_media_root():
... return settings.MEDIA_ROOT
>>> tmp_media_root = use_temporary_media_root()
>>> global_media_root == tmp_media_root
False
>>> global_media_root == settings.MEDIA_ROOT
True

assert_download_response

	
django_downloadview.test.assert_download_response(test_case, response, **assertions)

	Make test_case assert that response meets assertions.

Optional assertions dictionary can be used to check additional items:

	basename: the basename of the file in the response.

	content_type: the value of “Content-Type” header.

	mime_type: the MIME type part of “Content-Type” header (without
charset).

	content: the contents of the file.

	attachment: whether the file is returned as attachment or not.

Examples, related to StorageDownloadView demo:

from django.core.files.base import ContentFile
from django.core.urlresolvers import reverse
import django.test

from django_downloadview import assert_download_response, temporary_media_root

from demoproject.storage import views

Fixtures.
file_content = 'Hello world!\n'

def setup_file(path):
 views.storage.save(path, ContentFile(file_content))

class StaticPathTestCase(django.test.TestCase):
 @temporary_media_root()
 def test_download_response(self):
 """'storage:static_path' streams file by path."""
 setup_file('1.txt')
 url = reverse('storage:static_path', kwargs={'path': '1.txt'})
 response = self.client.get(url)
 assert_download_response(self,
 response,
 content=file_content,
 basename='1.txt',
 mime_type='text/plain')

class DynamicPathIntegrationTestCase(django.test.TestCase):
 """Integration tests around ``storage:dynamic_path`` URL."""
 @temporary_media_root()
 def test_download_response(self):
 """'dynamic_path' streams file by generated path.

 As we use ``self.client``, this test involves the whole Django stack,
 including settings, middlewares, decorators... So we need to setup a
 file, the storage, and an URL.

 This test actually asserts the URL ``storage:dynamic_path`` streams a
 file in storage.

 """
 setup_file('1.TXT')
 url = reverse('storage:dynamic_path', kwargs={'path': '1.txt'})
 response = self.client.get(url)
 assert_download_response(self,
 response,
 content=file_content,
 basename='1.TXT',
 mime_type='text/plain')

setup_view

	
django_downloadview.test.setup_view(view, request, *args, **kwargs)

	Mimic as_view(), but returns view instance.

Use this function to get view instances on which you can run unit tests,
by testing specific methods.

This is an early implementation of
https://code.djangoproject.com/ticket/20456

	view

	A view instance, such as TemplateView(template_name='dummy.html').
Initialization arguments are the same you would pass to as_view().

	request

	A request object, typically built with
RequestFactory [http://docs.djangoproject.com/en/1.5/topics/testing/advanced/#django.test.client.RequestFactory].

	args and kwargs

	“URLconf” positional and keyword arguments, the same you would pass to
reverse() [http://docs.djangoproject.com/en/1.5/ref/urlresolvers/#django.core.urlresolvers.reverse].

Example, related to StorageDownloadView demo:

import unittest

from django_downloadview import setup_view

from demoproject.storage import views

class DynamicPathUnitTestCase(unittest.TestCase):
 """Unit tests around ``views.DynamicStorageDownloadView``."""
 def test_get_path(self):
 """DynamicStorageDownloadView.get_path() returns uppercase path.

 Uses :func:`~django_downloadview.test.setup_view` to target only
 overriden methods.

 This test does not involve URLconf, middlewares or decorators. It is
 fast. It has clear scope. It does not assert ``storage:dynamic_path``
 URL works. It targets only custom ``DynamicStorageDownloadView`` class.

 """
 view = setup_view(views.DynamicStorageDownloadView(),
 django.test.RequestFactory().get('/fake-url'),
 path='dummy path')
 path = view.get_path()
 self.assertEqual(path, 'DUMMY PATH')

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Write healthchecks

In the previous testing topic, you made sure the views and
middlewares work as expected... within a test environment.

One common issue when deploying in production is that the reverse-proxy’s
configuration does not fit. You cannot check that within test environment.

Healthchecks are made to diagnose issues in live (production) environments.

Introducing healthchecks

Healthchecks (sometimes called “smoke tests” or “diagnosis”) are assertions you
run on a live (typically production) service, as opposed to fake/mock service
used during tests (unit, integration, functional).

See hospital [https://pypi.python.org/pypi/hospital] [1] and django-doctor [https://pypi.python.org/pypi/django-doctor] [2] projects about writing healthchecks for
Python and Django.

Typical healthchecks

Here is a typical healthcheck setup for download views with reverse-proxy
optimizations.

When you run this healthcheck suite, you get a good overview if a problem
occurs: you can compare expected results and learn which part (Django,
reverse-proxy or remote storage) is guilty.

Note

In the examples below, we use “localhost” and ports “80” (reverse-proxy) or
“8000” (Django). Adapt them to your configuration.

Check storage

Put a dummy file on the storage Django uses.

The write a healthcheck that asserts you can read the dummy file from storage.

On success, you know remote storage is ok.

Issues may involve permissions or communications (remote storage).

Note

This healthcheck may be outside Django.

Check Django VS storage

Implement a download view dedicated to healthchecks. It is typically a public
(but not referenced) view that streams a dummy file from real storage.
Let’s say you register it as /healthcheck-utils/download/ URL.

Write a healthcheck that asserts GET
http://localhost:8000/healtcheck-utils/download/ (notice the 8000 port:
local Django server) returns the expected reverse-proxy response (X-Accel,
X-Sendfile...).

On success, you know there is no configuration issue on the Django side.

Check reverse proxy VS storage

Write a location in your reverse-proxy’s configuration that proxy-pass to a
dummy file on storage.

Write a healthcheck that asserts this location returns the expected dummy file.

On success, you know the reverse proxy can serve files from storage.

Check them all together

We just checked all parts separately, so let’s make sure they can work
together.
Configure the reverse-proxy so that /healthcheck-utils/download/ is proxied
to Django. Then write a healthcheck that asserts GET
http://localhost:80/healthcheck-utils/download (notice the 80 port:
reverse-proxy server) returns the expected dummy file.

On success, you know everything is ok.

On failure, there is an issue in the X-Accel/X-Sendfile configuration.

Note

This last healthcheck should be the first one to run, i.e. if it passes,
others should pass too. The others are useful when this one fails.

Notes & references

	[1]	https://pypi.python.org/pypi/hospital

	[2]	https://pypi.python.org/pypi/django-doctor

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

File wrappers

A view return DownloadResponse which
itself carries a file wrapper. Here are file wrappers distributed by Django
and django-downloadview.

Django’s builtins

Django itself provides some file wrappers [https://docs.djangoproject.com/en/1.5/ref/files/file/] [1] you can use within
django-downloadview:

	django.core.files.File [http://docs.djangoproject.com/en/1.5/ref/files/file/#django.core.files.File] wraps a file that live on local
filesystem, initialized with a path. django-downloadview uses this
wrapper in PathDownloadView.

	django.db.models.fields.files.FieldFile [http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.fields.files.FieldFile] wraps a file that is
managed in a model. django-downloadview uses this wrapper in
ObjectDownloadView.

	django.core.files.base.ContentFile [http://docs.djangoproject.com/en/1.5/ref/files/file/#django.core.files.base.ContentFile] wraps a bytes, string or
unicode object. You may use it with VirtualDownloadView.

django-downloadview builtins

django-downloadview implements additional file wrappers:

	StorageFile wraps a file that is
managed via a storage (but not necessarily via a model).
StorageDownloadView uses this wrapper.

	HTTPFile wraps a file that lives at
some (remote) location, initialized with an URL.
HTTPDownloadView uses this wrapper.

	VirtualFile wraps a file that lives in
memory, i.e. built as a string.
This is a convenient wrapper to use in VirtualDownloadView subclasses.

API reference

StorageFile

	
class django_downloadview.files.StorageFile(storage, name, file=None)

	Bases: django.core.files.base.File

A file in a Django storage.

This class looks like django.db.models.fields.files.FieldFile [http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.fields.files.FieldFile],
but unrelated to model instance.

	
file

	Required by django.core.files.utils.FileProxy.

	
open(mode='rb')

	Retrieves the specified file from storage and return open() result.

Proxy to self.storage.open(self.name, mode).

	
save(content)

	Saves new content to the file.

Proxy to self.storage.save(self.name).

The content should be a proper File object, ready to be read from the
beginning.

	
path

	Return a local filesystem path which is suitable for open().

Proxy to self.storage.path(self.name).

May raise NotImplementedError if storage doesn’t support file access
with Python’s built-in open() function

	
delete()

	Delete the specified file from the storage system.

Proxy to self.storage.delete(self.name).

	
exists()

	Return True if file already exists in the storage system.

If False, then the name is available for a new file.

	
size

	Return the total size, in bytes, of the file.

Proxy to self.storage.size(self.name).

	
url

	Return an absolute URL where the file’s contents can be accessed.

Proxy to self.storage.url(self.name).

	
accessed_time

	Return the last accessed time (as datetime object) of the file.

Proxy to self.storage.accessed_time(self.name).

	
created_time

	Return the creation time (as datetime object) of the file.

Proxy to self.storage.created_time(self.name).

	
modified_time

	Return the last modification time (as datetime object) of the file.

Proxy to self.storage.modified_time(self.name).

HTTPFile

	
class django_downloadview.files.HTTPFile(request_factory=<function get at 0x34b0e60>, url='', name=u'', **kwargs)

	Bases: django.core.files.base.File

Wrapper for files that live on remote HTTP servers.

Acts as a proxy.

Uses https://pypi.python.org/pypi/requests.

Always sets “stream=True” in requests kwargs.

	
request

	

	
file

	

	
size

	Return the total size, in bytes, of the file.

Reads response’s “content-length” header.

VirtualFile

	
class django_downloadview.files.VirtualFile(file=None, name=u'', url='', size=None)

	Bases: django.core.files.base.File

Wrapper for files that live in memory.

	
size

	

Notes & references

	[1]	https://docs.djangoproject.com/en/1.5/ref/files/file/

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Responses

Views return DownloadResponse.

Middlewares (and decorators) are given the opportunity to capture responses and
convert them to ProxiedDownloadResponse.

DownloadResponse

	
class django_downloadview.response.DownloadResponse(file_instance, attachment=True, basename=None, status=200, content_type=None)

	Bases: django.http.response.StreamingHttpResponse

File download response (Django serves file, client downloads it).

This is a specialization of django.http.StreamingHttpResponse [http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse]
where streaming_content [http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse.streaming_content] is a
file wrapper.

Constructor differs a bit from HttpResponse:

	file_instance

	A file wrapper instance, such as
File.

	attachement

	Boolean. Whether to return the file as attachment or not.
Affects Content-Disposition header.

	basename

	Unicode. Client-side name of the file to stream.
Only used if attachment is True.
Affects Content-Disposition header.

	status

	HTTP status code.

	content_type

	Value for Content-Type header.
If None, then mime-type and encoding will be populated by the
response (default implementation uses mimetypes, based on file
name).

Here are some highlights to understand internal mechanisms and motivations:

	Let’s start by quoting PEP 3333 [http://www.python.org/dev/peps/pep-3333] (WSGI specification):

For large files, or for specialized uses of HTTP streaming,
applications will usually return an iterator (often a
generator-iterator) that produces the output in a block-by-block
fashion.

	Django WSGI handler (application implementation) return response object [https://github.com/django/django/blob/fd1279a44df3b9a837453cd79fd0fbcf81bae39d/django/core/handlers/wsgi.py#L268].

	django.http.HttpResponse [http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.HttpResponse] and subclasses are iterators.

	In StreamingHttpResponse [http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse], the
__iter__() [http://docs.python.org/2.7/library/stdtypes.html#container.__iter__] implementation proxies to
streaming_content [http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse.streaming_content].

	In DownloadResponse and subclasses, streaming_content
is a file wrapper. File wrapper is itself an iterator
over actual file content, and it also encapsulates access to file
attributes (size, name, ...).

	
default_headers

	Return dictionary of automatically-computed headers.

Uses an internal _default_headers cache.
Default values are computed if only cache hasn’t been set.

Content-Disposition header is encoded according to RFC 5987 [http://tools.ietf.org/html/rfc5987]. See also
http://stackoverflow.com/questions/93551/how-to-encode-the-filename-parameter-of-content-disposition-header-in-http.

	
items()

	Return iterable of (header, value).

This method is called by http handlers just before WSGI’s
start_response() is called... but it is not called by
django.test.ClientHandler! :’(

	
get_basename()

	Return basename.

	
get_content_type()

	Return a suitable “Content-Type” header for self.file.

	
get_mime_type()

	Return mime-type of the file.

	
get_encoding()

	Return encoding of the file to serve.

	
get_charset()

	Return the charset of the file to serve.

ProxiedDownloadResponse

	
class django_downloadview.response.ProxiedDownloadResponse(content='', *args, **kwargs)

	Bases: django.http.response.HttpResponse

Base class for internal redirect download responses.

This base class makes it possible to identify several types of specific
responses such as
XAccelRedirectResponse.

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

Demo project

Demo folder in project’s repository [https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/] [1] contains a Django project to illustrate
django-downloadview usage.

Documentation includes code from the demo

Almost every example in the documentation comes from the demo:

	discover examples in the documentation;

	browse related code and tests in demo project.

Examples in documentation are tested via demo project!

Browse demo code online

See demo folder in project’s repository [https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/] [1].

Deploy the demo

System requirements:

	Python [http://python.org] [2] version 2.7, available as python command.

Note

You may use Virtualenv [http://virtualenv.org] [3] to make sure the active python is the right
one.

	make and wget to use the provided Makefile.

Execute:

git clone git@github.com:benoitbryon/django-downloadview.git
cd django-downloadview/
make runserver

It installs and runs the demo server on localhost, port 8000. So have a look
at http://localhost:8000/

Note

If you cannot execute the Makefile, read it and adapt the few commands it
contains to your needs.

Browse and use demo/demoproject/ as a sandbox.

References

	[1]	(1, 2) https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/

	[2]	http://python.org

	[3]	http://virtualenv.org

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

About django-downloadview

	Vision

	Alternatives and related projects
	Django’s static file view

	django-sendfile

	License

	Authors & contributors

	Changelog
	1.4 (2013-11-24)

	1.3 (2013-11-08)

	1.2 (2013-05-28)

	1.1 (2013-04-11)

	1.0 (2012-12-04)

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

 	About django-downloadview

Vision

django-downloadview tries to simplify the development of “download” views
using Django [https://django-project.com] [1] framework. It provides generic views that cover most common
patterns.

Django is not the best solution to serve files: reverse proxies are far more
efficient. django-downloadview makes it easy to implement this best-practice.

Tests matter: django-downloadview provides tools to test download views and
optimizations.

Notes & references

See also

	Alternatives and related projects

	roadmap [https://github.com/benoitbryon/django-downloadview/issues/milestones]

	[1]	https://django-project.com

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

 	About django-downloadview

Alternatives and related projects

This document presents other projects that provide similar or complementary
functionalities. It focuses on differences with django-downloadview.

There is a comparison grid on djangopackages.com:
https://www.djangopackages.com/grids/g/file-streaming/.

Here are additional highlights...

Django’s static file view

django.contrib.staticfiles provides a view to serve files [https://docs.djangoproject.com/en/1.6/ref/contrib/staticfiles/#static-file-development-view] [1]. It is simple and
quite naive by design: it is meant for development, not for production.
See Django ticket #2131 [https://code.djangoproject.com/ticket/2131] [2]: advanced file streaming is left to third-party
applications.

django-downloadview is such a third-party application.

django-sendfile

django-sendfile [http://pypi.python.org/pypi/django-sendfile] [3] is a wrapper around web-server specific methods for sending
files to web clients.

django-senfile‘s main focus is simplicity: API is made of a single
sendfile() function you call inside your views:

from sendfile import sendfile

def hello_world(request):
 """Send 'hello-world.pdf' file as a response."""
 return sendfile(request, '/path/to/hello-world.pdf')

The download response type depends on the chosen backend, which could
be Django, Lighttpd’s X-Sendfile, Nginx’s X-Accel... depending your settings:

SENDFILE_BACKEND = 'sendfile.backends.nginx' # sendfile() will return
 # X-Accel responses.
Additional settings for sendfile's nginx backend.
SENDFILE_ROOT = '/path/to'
SENDFILE_URL = '/proxied-download'

Here are main differences between the two projects:

	django-sendfile supports only files that live on local filesystem (i.e.
where os.path.exists returns True). Whereas django-downloadview
allows you to serve or proxy files stored in various locations, including
remote ones.

	django-sendfile uses a single global configuration (i.e.
settings.SENDFILE_ROOT), thus optimizations are limited to a single
root folder. Whereas django-downloadview‘s
DownloadDispatcherMiddleware supports multiple configurations.

As of 2012-04-11, django-sendfile (version 0.3.2) seems quite popular and
may be a good alternative provided you serve files that live in a single
directory of local filesystem.

django_downloadview.sendfile() is a port of django-sendfile’s main function.

References

	[1]	https://docs.djangoproject.com/en/1.6/ref/contrib/staticfiles/#static-file-development-view

	[2]	https://code.djangoproject.com/ticket/2131

	[3]	http://pypi.python.org/pypi/django-sendfile

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

 	About django-downloadview

License

Copyright (c) 2012-2013, Benoît Bryon.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of django-downloadview nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

 	About django-downloadview

Authors & contributors

Maintainer: Benoît Bryon <benoit@marmelune.net>

Original code by Novapost [http://www.novapost.fr] team:

	Nicolas Tobo <https://github.com/nicolastobo>

	Lauréline Guérin <https://github.com/zebuline>

	Gregory Tappero <https://github.com/coulix>

	Rémy Hubscher <remy.hubscher@novapost.fr>

	Benoît Bryon <benoit@marmelune.net>

Developers: https://github.com/benoitbryon/django-downloadview/graphs/contributors

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-downloadview 1.4 documentation

 	About django-downloadview

Changelog

This document describes changes between past releases. For information about
future releases, check milestones [https://github.com/benoitbryon/django-downloadview/issues/milestones] [1] and Vision.

1.4 (2013-11-24)

Bugfixes and documentation features.

	Bugfix #43 - ObjectDownloadView returns HTTP 404 if model instance’s file
field is empty (was HTTP 500).

	Bugfix #7 - Special characters in file names (Content-Disposition header)
are urlencoded. An US-ASCII fallback is also provided.

	Feature #10 - django-downloadview is registered on djangopackages.com.

	Feature #65 - INSTALL documentation shows “known good set” (KGS) of versions,
i.e. versions that have been used in test environment.

1.3 (2013-11-08)

Big refactoring around middleware configuration, API readability and
documentation.

	Bugfix #57 - PathDownloadView opens files in binary mode (was text mode).

	Bugfix #48 - Fixed basename assertion in assert_download_response:
checks Content-Disposition header.

	Bugfix #49 - Fixed content assertion in assert_download_response:
checks only response’s streaming_content attribute.

	Bugfix #60 - VirtualFile.__iter__ uses force_bytes() to support both
“text-mode” and “binary-mode” content.
See https://code.djangoproject.com/ticket/21321

	Feature #50 - Introduced django_downloadview.DownloadDispatcherMiddleware
that iterates over a list of configurable download middlewares. Allows to
plug several download middlewares with different configurations.

This middleware is mostly dedicated to internal usage. It is used by
SmartDownloadMiddleware described below.

	Feature #42 - Documentation shows how to stream generated content (yield).
Introduced django_downloadview.StringIteratorIO.

	Refactoring #51 - Dropped support of Python 2.6

	Refactoring #25 - Introduced django_downloadview.SmartDownloadMiddleware
which allows to setup multiple optimization rules for one backend.

Deprecates the following settings related to previous single-and-global
middleware:

	NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_ROOT

	NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_URL

	NGINX_DOWNLOAD_MIDDLEWARE_EXPIRES

	NGINX_DOWNLOAD_MIDDLEWARE_WITH_BUFFERING

	NGINX_DOWNLOAD_MIDDLEWARE_LIMIT_RATE

	Refactoring #52 - ObjectDownloadView now inherits from SingleObjectMixin and
BaseDownloadView (was DownloadMixin and BaseDetailView).
Simplified DownloadMixin.render_to_response() signature.

	Refactoring #40 - Documentation includes examples from demo project.

	Refactoring #39 - Documentation focuses on usage, rather than API. Improved
narrative documentation.

	Refactoring #53 - Added base classes in django_downloadview.middlewares,
such as ProxiedDownloadMiddleware.

	Refactoring #54 - Expose most Python API directly in django_downloadview
package. Simplifies import statements in client applications.
Splitted nginx module in a package.

	Added unit tests, improved code coverage.

1.2 (2013-05-28)

Bugfixes and documentation improvements.

	Bugfix #26 - Prevented computation of virtual file’s size, unless the file
wrapper implements was_modified_since() method.

	Bugfix #34 - Improved support of files that do not implement modification
time.

	Bugfix #35 - Fixed README conversion from reStructuredText to HTML (PyPI).

1.1 (2013-04-11)

Various improvements.
Contains backward incompatible changes.

	Added HTTPDownloadView to proxy to arbitrary URL.

	Added VirtualDownloadView to support files living in memory.

	Using StreamingHttpResponse introduced with Django 1.5. Makes Django 1.5 a
requirement!

	Added django_downloadview.test.assert_download_response utility.

	Download views and response now use file wrappers. Most logic around file
attributes, formerly in views, moved to wrappers.

	Replaced DownloadView by PathDownloadView and StorageDownloadView. Use the
right one depending on the use case.

1.0 (2012-12-04)

	Introduced optimizations for Nginx X-Accel: a middleware and a decorator

	Introduced generic views: DownloadView and ObjectDownloadView

	Initialized project

Notes & references

	[1]	https://github.com/benoitbryon/django-downloadview/issues/milestones

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-downloadview 1.4 documentation

Contributing to the project

This document provides guidelines for people who want to contribute to the
project.

Create tickets

Please use the bugtracker [https://github.com/benoitbryon/django-downloadview/issues] [1] before starting some work:

	check if the bug or feature request has already been filed. It may have been
answered too!

	else create a new ticket.

	if you plan to contribute, tell us, so that we are given an opportunity to
give feedback as soon as possible.

	Then, in your commit messages, reference the ticket with some
refs #TICKET-ID syntax.

Fork and branch

	Work in forks and branches.

	Prefix your branch with the ticket ID corresponding to the issue. As an
example, if you are working on ticket #23 which is about contribute
documentation, name your branch like 23-contribute-doc.

	If you work in a development branch and want to refresh it with changes from
master, please rebase [http://git-scm.com/book/en/Git-Branching-Rebasing] [2] or merge-based rebase [http://tech.novapost.fr/psycho-rebasing-en.html] [3], i.e. don’t merge master.

Setup a development environment

System requirements:

	Python [http://python.org] [4] version 2.7, available as python command

	Virtualenv [http://virtualenv.org] [5] version >= 1.9.1, available as virtualenv command

	make and wget to use the provided Makefile.

Execute:

git clone git@github.com:benoitbryon/django-downloadview.git
cd django-downloadview/
make develop

If you cannot execute the Makefile, read it and adapt the few commands it
contains to your needs.

The Makefile

A Makefile is provided to ease development. Use it to:

	setup the development environment: make develop

	update it, as an example, after a pull: make update

	run tests: make test

	build documentation: make documentation

The Makefile is intended to be a live reference for the development
environment.

Demo project included

The Demo project is part of the tests. Maintain it along with code and
documentation.

References

	[1]	https://github.com/benoitbryon/django-downloadview/issues

	[2]	http://git-scm.com/book/en/Git-Branching-Rebasing

	[3]	http://tech.novapost.fr/psycho-rebasing-en.html

	[4]	http://python.org

	[5]	http://virtualenv.org

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	django-downloadview 1.4 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 django_downloadview	

 	
 	
 django_downloadview.files	

 	
 	
 django_downloadview.views.http	

 	
 	
 django_downloadview.views.object	

 	
 	
 django_downloadview.views.path	

 	
 	
 django_downloadview.views.storage	

 	
 	
 django_downloadview.views.virtual	

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	django-downloadview 1.4 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	

 	accessed_time (django_downloadview.files.StorageFile attribute)

 	assert_download_response() (in module django_downloadview.test)

 	

 	assert_x_accel_redirect() (in module django_downloadview.nginx.tests)

 	attachment (django_downloadview.views.base.DownloadMixin attribute)

B

 	

 	BaseDownloadView (class in django_downloadview.views.base)

 	basename (django_downloadview.views.base.DownloadMixin attribute)

 	

 	basename_field (django_downloadview.views.object.ObjectDownloadView attribute)

C

 	

 	charset_field (django_downloadview.views.object.ObjectDownloadView attribute)

 	

 	created_time (django_downloadview.files.StorageFile attribute)

D

 	

 	default_headers (django_downloadview.response.DownloadResponse attribute)

 	delete() (django_downloadview.files.StorageFile method)

 	django_downloadview.files (module)

 	django_downloadview.views.http (module)

 	django_downloadview.views.object (module)

 	django_downloadview.views.path (module)

 	

 	django_downloadview.views.storage (module)

 	django_downloadview.views.virtual (module)

 	download_response() (django_downloadview.views.base.DownloadMixin method)

 	DownloadMixin (class in django_downloadview.views.base)

 	DownloadResponse (class in django_downloadview.response)

E

 	

 	encoding_field (django_downloadview.views.object.ObjectDownloadView attribute)

 	

 	exists() (django_downloadview.files.StorageFile method)

F

 	

 	file (django_downloadview.files.HTTPFile attribute)

 	

 	(django_downloadview.files.StorageFile attribute)

 	file_field (django_downloadview.views.object.ObjectDownloadView attribute)

 	

 	file_not_found_response() (django_downloadview.views.base.DownloadMixin method)

G

 	

 	get() (django_downloadview.views.base.BaseDownloadView method)

 	

 	(django_downloadview.views.object.ObjectDownloadView method)

 	get_basename() (django_downloadview.response.DownloadResponse method)

 	

 	(django_downloadview.views.base.DownloadMixin method)

 	(django_downloadview.views.object.ObjectDownloadView method)

 	get_charset() (django_downloadview.response.DownloadResponse method)

 	get_content_type() (django_downloadview.response.DownloadResponse method)

 	get_encoding() (django_downloadview.response.DownloadResponse method)

 	get_file() (django_downloadview.views.base.DownloadMixin method)

 	

 	(django_downloadview.views.http.HTTPDownloadView method)

 	(django_downloadview.views.object.ObjectDownloadView method)

 	(django_downloadview.views.path.PathDownloadView method)

 	(django_downloadview.views.storage.StorageDownloadView method)

 	

 	get_mime_type() (django_downloadview.response.DownloadResponse method)

 	get_path() (django_downloadview.views.path.PathDownloadView method)

 	

 	(django_downloadview.views.storage.StorageDownloadView method)

 	get_redirect_url() (django_downloadview.nginx.middlewares.XAccelRedirectMiddleware method)

 	get_request_factory() (django_downloadview.views.http.HTTPDownloadView method)

 	get_request_kwargs() (django_downloadview.views.http.HTTPDownloadView method)

 	get_url() (django_downloadview.views.http.HTTPDownloadView method)

H

 	

 	HTTPDownloadView (class in django_downloadview.views.http)

 	

 	HTTPFile (class in django_downloadview.files)

I

 	

 	is_download_response() (django_downloadview.nginx.middlewares.XAccelRedirectMiddleware method)

 	

 	items() (django_downloadview.response.DownloadResponse method)

M

 	

 	mime_type_field (django_downloadview.views.object.ObjectDownloadView attribute)

 	modification_time_field (django_downloadview.views.object.ObjectDownloadView attribute)

 	

 	modified_time (django_downloadview.files.StorageFile attribute)

N

 	

 	not_modified_response() (django_downloadview.views.base.DownloadMixin method)

O

 	

 	ObjectDownloadView (class in django_downloadview.views.object)

 	

 	open() (django_downloadview.files.StorageFile method)

P

 	

 	path (django_downloadview.files.StorageFile attribute)

 	

 	(django_downloadview.views.path.PathDownloadView attribute)

 	(django_downloadview.views.storage.StorageDownloadView attribute)

 	path_url_kwarg (django_downloadview.views.path.PathDownloadView attribute)

 	PathDownloadView (class in django_downloadview.views.path)

 	process_download_response() (django_downloadview.nginx.middlewares.XAccelRedirectMiddleware method)

 	

 	process_response() (django_downloadview.nginx.middlewares.XAccelRedirectMiddleware method)

 	ProxiedDownloadResponse (class in django_downloadview.response)

 	
 Python Enhancement Proposals

 	

 	PEP 3333

R

 	

 	render_to_response() (django_downloadview.views.base.DownloadMixin method)

 	request (django_downloadview.files.HTTPFile attribute)

 	

 	request_kwargs (django_downloadview.views.http.HTTPDownloadView attribute)

 	response_class (django_downloadview.views.base.DownloadMixin attribute)

S

 	

 	save() (django_downloadview.files.StorageFile method)

 	setup_view() (in module django_downloadview.test)

 	size (django_downloadview.files.HTTPFile attribute)

 	

 	(django_downloadview.files.StorageFile attribute)

 	(django_downloadview.files.VirtualFile attribute)

 	size_field (django_downloadview.views.object.ObjectDownloadView attribute)

 	

 	storage (django_downloadview.views.storage.StorageDownloadView attribute)

 	StorageDownloadView (class in django_downloadview.views.storage)

 	StorageFile (class in django_downloadview.files)

T

 	

 	temporary_media_root() (in module django_downloadview.test)

U

 	

 	url (django_downloadview.files.StorageFile attribute)

 	

 	(django_downloadview.views.http.HTTPDownloadView attribute)

V

 	

 	VirtualDownloadView (class in django_downloadview.views.virtual)

 	

 	VirtualFile (class in django_downloadview.files)

W

 	

 	was_modified_since() (django_downloadview.views.base.DownloadMixin method)

 	

 	(django_downloadview.views.virtual.VirtualDownloadView method)

X

 	

 	x_accel_redirect() (in module django_downloadview.nginx.decorators)

 	

 	XAccelRedirectMiddleware (class in django_downloadview.nginx.middlewares)

 Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

views/custom.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-downloadview 1.4 documentation »

 		Setup views »

Make your own view

DownloadMixin

The django_downloadview.views.DownloadMixin class is not a view. It
is a base class which you can inherit of to create custom download views.

DownloadMixin is a base of BaseDownloadView, which itself is a base of
all other django_downloadview’s builtin views.

		
class django_downloadview.views.base.DownloadMixin

		Bases: object

Placeholders and base implementation to create file download views.

Note

This class does not inherit from
django.views.generic.base.View [http://docs.djangoproject.com/en/1.5/ref/class-based-views/base/#django.views.generic.base.View].

The get_file() method is a placeholder subclasses must implement.
Base implementation raises NotImplementedError.

Other methods provide a base implementation that use the file wrapper
returned by get_file().

		
response_class

		Response class, to be used in render_to_response().

alias of DownloadResponse

		
attachment = True

		Whether to return the response as attachment or not.

		
basename = None

		Client-side filename, if only file is returned as attachment.

		
get_file()

		Return a file wrapper instance.

Raises FileNotFound if file
does not exist.

		
get_basename()

		

		
was_modified_since(file_instance, since)

		Return True if file_instance was modified after since.

Uses file wrapper’s was_modified_since if available, with value of
since as positional argument.

Else, fallbacks to default implementation, which uses
django.views.static.was_modified_since().

Django’s was_modified_since function needs a datetime and a size.
It is passed modified_time and size attributes from file
wrapper. If file wrapper does not support these attributes
(AttributeError or NotImplementedError is raised), then
the file is considered as modified and True is returned.

		
not_modified_response(*response_args, **response_kwargs)

		Return django.http.HttpResponseNotModified [http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.HttpResponseNotModified] instance.

		
download_response(*response_args, **response_kwargs)

		Return DownloadResponse.

		
file_not_found_response()

		Raise Http404.

		
render_to_response(*response_args, **response_kwargs)

		Return “download” response (if everything is ok).

Return file_not_found_response() if file does not exist.

Respects the “HTTP_IF_MODIFIED_SINCE” header if any. In that case, uses
was_modified_since() and not_modified_response().

Else, uses download_response() to return a download response.

BaseDownloadView

The django_downloadview.views.BaseDownloadView class is a base
class to create download views. It inherits DownloadMixin and
django.views.generic.base.View [http://docs.djangoproject.com/en/1.5/ref/class-based-views/base/#django.views.generic.base.View].

The only thing it does is to implement
get: it triggers
DownloadMixin's render_to_response.

		
class django_downloadview.views.base.BaseDownloadView(**kwargs)

		Bases: django_downloadview.views.base.DownloadMixin, django.views.generic.base.View [http://docs.djangoproject.com/en/1.5/ref/class-based-views/base/#django.views.generic.base.View]

A base DownloadMixin that implements get().

		
get(request, *args, **kwargs)

		Handle GET requests: stream a file.

Handling http not modified responses

Sometimes, you know the latest date and time the content was generated at, and
you know a new request would generate exactly the same content. In such a case,
you should implement was_modified_since() in your
view.

Note

Default was_modified_since() implementation
trusts file wrapper’s was_modified_since if any. Else (if calling
was_modified_since() raises NotImplementedError or
AttributeError) it returns True, i.e. it assumes the file was
modified.

As an example, the download views above always generate “Hello world!”... so,
if the client already downloaded it, we can safely return some HTTP “304 Not
Modified” response:

from django.core.files.base import ContentFile
from django_downloadview import VirtualDownloadView

class TextDownloadView(VirtualDownloadView):
 def get_file(self):
 """Return :class:`django.core.files.base.ContentFile` object."""
 return ContentFile(u"Hello world!", name='hello-world.txt')

 def was_modified_since(self, file_instance, since):
 return False # Never modified, always u"Hello world!".

 © Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

views/storage.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-downloadview 1.4 documentation »

 		Setup views »

StorageDownloadView

StorageDownloadView serves files given a storage and a path.

Use this view when you manage files in a storage (which is a good practice),
unrelated to a model.

Simple example

Given a storage:

from django.core.files.storage import FileSystemStorage

storage = FileSystemStorage()

Setup a view to stream files in storage:

from django_downloadview import StorageDownloadView

static_path = StorageDownloadView.as_view(storage=storage)

The view accepts a path argument you can setup either in as_view or
via URLconfs:

from django.conf.urls import patterns, url

from demoproject.storage import views

urlpatterns = patterns(
 '',
 url(r'^static-path/(?P<path>[a-zA-Z0-9_-]+\.[a-zA-Z0-9]{1,4})$',
 views.static_path,
 name='static_path'),
)

Computing path dynamically

Override the StorageDownloadView.get_path() method to adapt path
resolution to your needs.

As an example, here is the same view as above, but the path is converted to
uppercase:

from django_downloadview import StorageDownloadView

class DynamicStorageDownloadView(StorageDownloadView):
 """Serve file of storage by path.upper()."""
 def get_path(self):
 """Return uppercase path."""
 return super(DynamicStorageDownloadView, self).get_path().upper()

dynamic_path = DynamicStorageDownloadView.as_view(storage=storage)

API reference

		
class django_downloadview.views.storage.StorageDownloadView(**kwargs)

		Bases: django_downloadview.views.path.PathDownloadView

Serve a file using storage and filename.

		
storage = <django.core.files.storage.DefaultStorage object at 0x37e83d0>

		Storage the file to serve belongs to.

		
path = None

		Path to the file to serve relative to storage.

		
get_path()

		Return path of the file to serve, relative to storage.

Default implementation simply returns view’s path attribute.

Override this method if you want custom implementation.

		
get_file()

		Return StorageFile instance.

 © Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

views/object.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-downloadview 1.4 documentation »

 		Setup views »

ObjectDownloadView

ObjectDownloadView serves files managed in models with file fields
such as FileField [http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.FileField] or
ImageField [http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.ImageField].

Use this view like Django’s builtin
DetailView [http://docs.djangoproject.com/en/1.5/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView].

Additional options allow you to store file metadata (size, content-type, ...)
in the model, as deserialized fields.

Simple example

Given a model with a FileField [http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.FileField]:

from django.db import models

class Document(models.Model):
 slug = models.SlugField()
 file = models.FileField(upload_to='object')

Setup a view to stream the file attribute:

from django_downloadview import ObjectDownloadView

from demoproject.object.models import Document

default_file_view = ObjectDownloadView.as_view(model=Document)

ObjectDownloadView inherits from
BaseDetailView, i.e. it expects either
slug or pk:

from django.conf.urls import patterns, url

from demoproject.object import views

urlpatterns = patterns(
 '',
 url(r'^default-file/(?P<slug>[a-zA-Z0-9_-]+)/$',
 views.default_file_view,
 name='default_file'),
)

Serving specific file field

If your model holds several file fields, or if the file field name is not
“file”, you can use ObjectDownloadView.file_field to specify the field
to use.

Here is a model where there are two file fields:

from django.db import models

class Document(models.Model):
 slug = models.SlugField()
 file = models.FileField(upload_to='object')
 another_file = models.FileField(upload_to='object-other')

Then here is the code to serve “another_file” instead of the default “file”:

from django_downloadview import ObjectDownloadView

from demoproject.object.models import Document

another_file_view = ObjectDownloadView.as_view(
 model=Document,
 file_field='another_file')

Mapping file attributes to model’s

Sometimes, you use Django model to store file’s metadata. Some of this metadata
can be used when you serve the file.

As an example, let’s consider the client-side basename lives in model and not
in storage:

from django.db import models

class Document(models.Model):
 slug = models.SlugField()
 file = models.FileField(upload_to='object')
 basename = models.CharField(max_length=100)

Then you can configure the ObjectDownloadView.basename_field option:

from django_downloadview import ObjectDownloadView

from demoproject.object.models import Document

deserialized_basename_view = ObjectDownloadView.as_view(
 model=Document,
 basename_field='basename')

Note

basename could have been a model’s property instead of a CharField.

See details below for a full list of options.

API reference

		
class django_downloadview.views.object.ObjectDownloadView(**kwargs)

		Bases: django.views.generic.detail.SingleObjectMixin [http://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin], django_downloadview.views.base.BaseDownloadView

Serve file fields from models.

This class extends SingleObjectMixin [http://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin],
so you can use its arguments to target the instance to operate on:
slug, slug_kwarg, model, queryset...

In addition to SingleObjectMixin [http://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin]
arguments, you can set arguments related to the file to be downloaded:

		file_field;

		basename_field;

		encoding_field;

		mime_type_field;

		charset_field;

		modification_time_field;

		size_field.

file_field is the main one. Other arguments are provided for
convenience, in case your model holds some (deserialized) metadata about
the file, such as its basename, its modification time, its MIME type...
These fields may be particularly handy if your file storage is not the
local filesystem.

		
file_field = 'file'

		Name of the model’s attribute which contains the file to be streamed.
Typically the name of a FileField.

		
basename_field = None

		Optional name of the model’s attribute which contains the basename.

		
encoding_field = None

		Optional name of the model’s attribute which contains the encoding.

		
mime_type_field = None

		Optional name of the model’s attribute which contains the MIME type.

		
charset_field = None

		Optional name of the model’s attribute which contains the charset.

		
modification_time_field = None

		Optional name of the model’s attribute which contains the modification

		
size_field = None

		Optional name of the model’s attribute which contains the size.

		
get_file()

		Return FieldFile [http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.fields.files.FieldFile] instance.

The file wrapper is model’s field specified as file_field. It
is typically a FieldFile [http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.fields.files.FieldFile] or
subclass.

Raises FileNotFound if
instance’s field is empty.

Additional attributes are set on the file wrapper if encoding,
mime_type, charset, modification_time or
size are configured.

		
get_basename()

		Return client-side filename.

		
get(request, *args, **kwargs)

		

 © Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

search.html

 Navigation

 		
 index

 		
 modules |

 		django-downloadview 1.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

_static/comment-close.png

views/virtual.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-downloadview 1.4 documentation »

 		Setup views »

VirtualDownloadView

VirtualDownloadView serves files that do not live on disk.
Use it when you want to stream a file which content is dynamically generated
or which lives in memory.

It is all about overriding VirtualDownloadView.get_file() method so that
it returns a suitable file wrapper...

Note

Current implementation does not support reverse-proxy optimizations,
because there is no place reverse-proxy can load files from after Django
exited.

Serve text (string or unicode) or bytes

Let’s consider you build text dynamically, as a bytes or string or unicode
object. Serve it with Django’s builtin
ContentFile [http://docs.djangoproject.com/en/1.5/ref/files/file/#django.core.files.base.ContentFile] wrapper:

from django.core.files.base import ContentFile

from django_downloadview import VirtualDownloadView

class TextDownloadView(VirtualDownloadView):
 def get_file(self):
 """Return :class:`django.core.files.base.ContentFile` object."""
 return ContentFile(u"Hello world!\n", name='hello-world.txt')

Serve StringIO

StringIO [http://docs.python.org/2.7/library/stringio.html#StringIO.StringIO] object lives in memory. Let’s wrap it in some
download view via VirtualFile:

from StringIO import StringIO

from django_downloadview import VirtualDownloadView
from django_downloadview import VirtualFile

class StringIODownloadView(VirtualDownloadView):
 def get_file(self):
 """Return wrapper on ``StringIO`` object."""
 file_obj = StringIO(u"Hello world!\n")
 return VirtualFile(file_obj, name='hello-world.txt')

Stream generated content

Let’s consider you have a generator function (yield) or an iterator object
(__iter__()):

def generate_hello():
 yield u'Hello '
 yield u'world!'
 yield u'\n'

Stream generated content using VirtualDownloadView,
VirtualFile and
StringIteratorIO:

from django_downloadview import VirtualDownloadView
from django_downloadview import VirtualFile
from django_downloadview import StringIteratorIO

class GeneratedDownloadView(VirtualDownloadView):
 def get_file(self):
 """Return wrapper on ``StringIteratorIO`` object."""
 file_obj = StringIteratorIO(generate_hello())
 return VirtualFile(file_obj, name='hello-world.txt')

API reference

		
class django_downloadview.views.virtual.VirtualDownloadView(**kwargs)

		Bases: django_downloadview.views.base.BaseDownloadView

Serve not-on-disk or generated-on-the-fly file.

Override the get_file() method to customize file wrapper.

		
was_modified_since(file_instance, since)

		Delegate to file wrapper’s was_modified_since, or return True.

This is the implementation of an edge case: when files are generated
on the fly, we cannot guess whether they have been modified or not.
If the file wrapper implements was_modified_since() method, then we
trust it. Otherwise it is safer to suppose that the file has been
modified.

This behaviour prevents file size to be computed on the Django side.
Because computing file size means iterating over all the file contents,
and we want to avoid that whenever possible. As an example, it could
reduce all the benefits of working with dynamic file generators...
which is a major feature of virtual files.

 © Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

_static/up-pressed.png

_static/up.png

views/http.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-downloadview 1.4 documentation »

 		Setup views »

HTTPDownloadView

HTTPDownloadView serves a file given an URL., i.e. it acts like
a proxy.

This view is particularly handy when:

		the client does not have access to the file resource, while your Django
server does.

		the client does trust your server, your server trusts a third-party, you do
not want to bother the client with the third-party.

Simple example

Setup a view to stream files given URL:

from django_downloadview import HTTPDownloadView

class SimpleURLDownloadView(HTTPDownloadView):
 def get_url(self):
 """Return URL of hello-world.txt file on GitHub."""
 return 'https://raw.github.com/benoitbryon/django-downloadview' \
 '/b7f660c5e3f37d918b106b02c5af7a887acc0111' \
 '/demo/demoproject/download/fixtures/hello-world.txt'

simple_url = SimpleURLDownloadView.as_view()

API reference

		
class django_downloadview.views.http.HTTPDownloadView(**kwargs)

		Bases: django_downloadview.views.base.BaseDownloadView

Proxy files that live on remote servers.

		
url = u''

		URL to download (the one we are proxying).

		
request_kwargs = {}

		Additional keyword arguments for request handler.

		
get_request_factory()

		Return request factory to perform actual HTTP request.

Default implementation returns requests.get() [http://docs.python-requests.org/en/latest/api/#requests.get] callable.

		
get_request_kwargs()

		Return keyword arguments for use with get_request_factory().

Default implementation returns request_kwargs.

		
get_url()

		Return remote file URL (the one we are proxying).

Default implementation returns url.

		
get_file()

		Return wrapper which has an url attribute.

 © Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

_static/plus.png

_static/down.png

_static/comment.png

views/path.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-downloadview 1.4 documentation »

 		Setup views »

PathDownloadView

PathDownloadView serves file given a path on local filesystem.

Use this view whenever you just have a path, outside storage or model.

Warning

Take care of path validation, especially if you compute paths from user
input: an attacker may be able to download files from arbitrary locations.
In most cases, you should consider managing files in storages, because they
implement default security mechanisms.

Simple example

Setup a view to stream files given path:

import os

from django_downloadview import PathDownloadView

Let's initialize some fixtures.
app_dir = os.path.dirname(os.path.abspath(__file__))
project_dir = os.path.dirname(app_dir)
fixtures_dir = os.path.join(project_dir, 'fixtures')
#: Path to a text file that says 'Hello world!'.
hello_world_path = os.path.join(fixtures_dir, 'hello-world.txt')

#: Serve ``fixtures/hello-world.txt`` file.
static_path = PathDownloadView.as_view(path=hello_world_path)

Computing path dynamically

Override the PathDownloadView.get_path() method to adapt path
resolution to your needs:

import os

from django_downloadview import PathDownloadView

Let's initialize some fixtures.
app_dir = os.path.dirname(os.path.abspath(__file__))
project_dir = os.path.dirname(app_dir)
fixtures_dir = os.path.join(project_dir, 'fixtures')

class DynamicPathDownloadView(PathDownloadView):
 """Serve file in ``settings.MEDIA_ROOT``.

 .. warning::

 Make sure to prevent "../" in path via URL patterns.

 .. note::

 This particular setup would be easier to perform with
 :class:`StorageDownloadView`

 """
 def get_path(self):
 """Return path inside fixtures directory."""
 # Get path from URL resolvers or as_view kwarg.
 relative_path = super(DynamicPathDownloadView, self).get_path()
 # Make it absolute.
 absolute_path = os.path.join(fixtures_dir, relative_path)
 return absolute_path

dynamic_path = DynamicPathDownloadView.as_view()

The view accepts a path argument you can setup either in as_view or
via URLconfs:

from django.conf.urls import patterns, url

from demoproject.path import views

urlpatterns = patterns(
 '',
 url(r'^dynamic-path/(?P<path>[a-zA-Z0-9_-]+\.[a-zA-Z0-9]{1,4})$',
 views.dynamic_path,
 name='dynamic_path'),
)

API reference

		
class django_downloadview.views.path.PathDownloadView(**kwargs)

		Bases: django_downloadview.views.base.BaseDownloadView

Serve a file using filename.

		
path = None

		Server-side name (including path) of the file to serve.

Filename is supposed to be an absolute filename of a file located on the
local filesystem.

		
path_url_kwarg = 'path'

		Name of the URL argument that contains path.

		
get_path()

		Return actual path of the file to serve.

Default implementation simply returns view’s path.

Override this method if you want custom implementation.
As an example, path could be relative and your custom
get_path() implementation makes it absolute.

		
get_file()

		Use path to return wrapper around file to serve.

 © Copyright 2012, Benoît Bryon.
 Created using Sphinx 1.1.3.

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

