
django-downloadview Documentation
Release 1.5

Benoît Bryon

November 29, 2013

Contents

i

ii

django-downloadview Documentation, Release 1.5

django-downloadview makes it easy to serve files with Django:

• you manage files with Django (permissions, search, generation, ...);

• files are stored somewhere or generated somehow (local filesystem, remote storage, memory...);

• django-downloadview helps you stream the files with very little code;

• django-downloadview helps you improve performances with reverse proxies, via mechanisms such as
Nginx’s X-Accel.

Contents 1

django-downloadview Documentation, Release 1.5

2 Contents

CHAPTER 1

Example

Let’s serve a file stored in a FileField of some model:

from django.conf.urls import url, url_patterns
from django_downloadview import ObjectDownloadView
from demoproject.download.models import Document # A model with a FileField

ObjectDownloadView inherits from django.views.generic.BaseDetailView.
download = ObjectDownloadView.as_view(model=Document, file_field=’file’)

url_patterns = (’’,
url(’^download/(?P<slug>[A-Za-z0-9_-]+)/$’, download, name=’download’),

)

3

django-downloadview Documentation, Release 1.5

4 Chapter 1. Example

CHAPTER 2

Ressources

• Documentation: http://django-downloadview.readthedocs.org

• PyPI page: http://pypi.python.org/pypi/django-downloadview

• Code repository: https://github.com/benoitbryon/django-downloadview

• Bugtracker: https://github.com/benoitbryon/django-downloadview/issues

• Continuous integration: https://travis-ci.org/benoitbryon/django-downloadview

• Roadmap: https://github.com/benoitbryon/django-downloadview/issues/milestones

5

http://django-downloadview.readthedocs.org
http://pypi.python.org/pypi/django-downloadview
https://github.com/benoitbryon/django-downloadview
https://github.com/benoitbryon/django-downloadview/issues
https://travis-ci.org/benoitbryon/django-downloadview
https://github.com/benoitbryon/django-downloadview/issues/milestones

django-downloadview Documentation, Release 1.5

6 Chapter 2. Ressources

CHAPTER 3

Contents

3.1 Overview, concepts

Given:

• you manage files with Django (permissions, search, generation, ...)

• files are stored somewhere or generated somehow (local filesystem, remote storage, memory...)

As a developer, you want to serve files quick and efficiently.

Here is an overview of django-downloadview‘s answer...

3.1.1 Generic views cover commons patterns

Choose the generic view depending on the file you want to serve:

• ObjectDownloadView: file field in a model;

• StorageDownloadView: file in a storage;

• PathDownloadView: absolute filename on local filesystem;

• HTTPDownloadView: URL (the resource is proxied);

• VirtualDownloadView: bytes, text, StringIO, generated file...

3.1.2 Generic views and mixins allow easy customization

If your use case is a bit specific, you can easily extend the views above or create your own based on mixins.

3.1.3 Views return DownloadResponse

Views return DownloadResponse. It is a special django.http.StreamingHttpResponse where content
is encapsulated in a file wrapper.

Learn more in Responses.

7

http://docs.python.org/2.7/library/stringio.html#StringIO.StringIO
http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse

django-downloadview Documentation, Release 1.5

3.1.4 DownloadResponse carry file wrapper

Views instanciate a file wrapper and use it to initialize responses.

File wrappers describe files: they carry files properties such as name, size, encoding...

File wrappers implement loading and iterating over file content. Whenever possible, file wrappers do not embed
file data, in order to save memory.

Learn more about available file wrappers in File wrappers.

3.1.5 Middlewares convert DownloadResponse into ProxiedDownloadResponse

Before WSGI application use file wrapper to load file contents, middlewares (or decorators) are given the opportunity
to capture DownloadResponse instances.

Let’s take this opportunity to optimize file loading and streaming!

A good optimization it to delegate streaming to a reverse proxy, such as nginx 1 via X-Accel 2 internal redirects.

django_downloadview provides middlewares that convert DownloadResponse into
ProxiedDownloadResponse.

Learn more in Optimize streaming.

3.1.6 Testing matters

django-downloadview also helps you test the views you customized.

You may also write healthchecks to make sure everything goes fine in live environments.

3.1.7 What’s next?

Let’s install django-downloadview.

Notes & references

3.2 Install

Note: If you want to install a development environment, please see Contributing to the project.

System requirements:

• Python 2.7

Install the package with your favorite Python installer. As an example, with pip:

pip install django-downloadview

Installing django-downloadview will automatically trigger the installation of the following requirements:

1 http://nginx.org
2 http://wiki.nginx.org/X-accel

8 Chapter 3. Contents

http://nginx.org
http://wiki.nginx.org/X-accel
http://nginx.org
http://wiki.nginx.org/X-accel

django-downloadview Documentation, Release 1.5

REQUIREMENTS = [’setuptools’, ’Django>=1.5’, ’requests’]

Note: Since version 1.1, django-downloadview requires Django>=1.5, which provides
StreamingHttpResponse.

3.2.1 Known good set of versions

django-downloadview has been tested in an environment with the following set of versions. If something is going
wrong with other versions, please report it in django-downloadview’s bugtracker 3.

bpython = 0.12
collective.recipe.omelette = 0.16
coverage = 3.7
Django = 1.6
django-nose = 1.2
docutils = 0.11
evg.recipe.activate = 0.5
Jinja2 = 2.7.1
MarkupSafe = 0.18
mock = 1.0.1
nose = 1.3.0
Pygments = 1.6
python-termstyle = 0.1.10
rednose = 0.4.1
requests = 2.0.1
Sphinx = 1.1.3
sphinxcontrib-testbuild = 0.1.3
z3c.recipe.mkdir = 0.6
zc.recipe.egg = 2.0.1
zest.releaser = 3.48

Notes & references

See Also:

• Configure

• Changelog

• License

3.3 Configure

Here is the list of settings used by django-downloadview.

3.3.1 INSTALLED_APPS

There is no need to register this application in your Django’s INSTALLED_APPS setting.

3 https://github.com/benoitbryon/django-downloadview/issues

3.3. Configure 9

http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse
https://github.com/benoitbryon/django-downloadview/issues
https://github.com/benoitbryon/django-downloadview/issues

django-downloadview Documentation, Release 1.5

3.3.2 MIDDLEWARE_CLASSES

If you plan to setup reverse-proxy optimizations, add django_downloadview.SmartDownloadMiddleware
to MIDDLEWARE_CLASSES. It is a response middleware. Move it after middlewares that compute the response
content such as gzip middleware.

Example:

MIDDLEWARE_CLASSES = [
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’django_downloadview.SmartDownloadMiddleware’

]

3.3.3 DOWNLOADVIEW_BACKEND

This setting is used by SmartDownloadMiddleware. It is the import string of a callable (typically a class) of an
optimization backend (typically a BaseDownloadMiddleware subclass).

Example:

DOWNLOADVIEW_BACKEND = ’django_downloadview.nginx.XAccelRedirectMiddleware’

See Optimize streaming for a list of available backends (middlewares).

When django_downloadview.SmartDownloadMiddleware is in your MIDDLEWARE_CLASSES, this set-
ting must be explicitely configured (no default value). Else, you can ignore this setting.

3.3.4 DOWNLOADVIEW_RULES

This setting is used by SmartDownloadMiddleware. It is a list of positional arguments or keyword arguments
that will be used to instanciate class mentioned as DOWNLOADVIEW_BACKEND.

Each item in the list can be either a list of positional arguments, or a dictionary of keyword arguments. One item
cannot contain both positional and keyword arguments.

Here is an example containing one rule using keyword arguments:

DOWNLOADVIEW_RULES = [
{

’source_url’: ’/media/nginx/’,
’destination_url’: ’/nginx-optimized-by-middleware/’,

},
]

See Optimize streaming for details about builtin backends (middlewares) and their options.

When django_downloadview.SmartDownloadMiddleware is in your MIDDLEWARE_CLASSES, this set-
ting must be explicitely configured (no default value). Else, you can ignore this setting.

3.4 Setup views

Setup views depending on your needs:

10 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

• ObjectDownloadView when you have a model with a file field;

• StorageDownloadView when you manage files in a storage;

• PathDownloadView when you have an absolute filename on local filesystem;

• HTTPDownloadView when you have an URL (the resource is proxied);

• VirtualDownloadView when you generate a file dynamically;

• bases and mixins to make your own.

3.4.1 ObjectDownloadView

ObjectDownloadView serves files managed in models with file fields such as FileField or ImageField.

Use this view like Django’s builtin DetailView.

Additional options allow you to store file metadata (size, content-type, ...) in the model, as deserialized fields.

Simple example

Given a model with a FileField:

from django.db import models

class Document(models.Model):
slug = models.SlugField()
file = models.FileField(upload_to=’object’)

Setup a view to stream the file attribute:

from django_downloadview import ObjectDownloadView

from demoproject.object.models import Document

default_file_view = ObjectDownloadView.as_view(model=Document)

ObjectDownloadView inherits from BaseDetailView, i.e. it expects either slug or pk:

from django.conf.urls import patterns, url

from demoproject.object import views

urlpatterns = patterns(
’’,
url(r’^default-file/(?P<slug>[a-zA-Z0-9_-]+)/$’,

views.default_file_view,
name=’default_file’),

)

Serving specific file field

If your model holds several file fields, or if the file field name is not “file”, you can use
ObjectDownloadView.file_field to specify the field to use.

3.4. Setup views 11

http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.FileField
http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.ImageField
http://docs.djangoproject.com/en/1.5/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView
http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.FileField

django-downloadview Documentation, Release 1.5

Here is a model where there are two file fields:

from django.db import models

class Document(models.Model):
slug = models.SlugField()
file = models.FileField(upload_to=’object’)
another_file = models.FileField(upload_to=’object-other’)

Then here is the code to serve “another_file” instead of the default “file”:

from django_downloadview import ObjectDownloadView

from demoproject.object.models import Document

another_file_view = ObjectDownloadView.as_view(
model=Document,
file_field=’another_file’)

Mapping file attributes to model’s

Sometimes, you use Django model to store file’s metadata. Some of this metadata can be used when you serve the file.

As an example, let’s consider the client-side basename lives in model and not in storage:

from django.db import models

class Document(models.Model):
slug = models.SlugField()
file = models.FileField(upload_to=’object’)
basename = models.CharField(max_length=100)

Then you can configure the ObjectDownloadView.basename_field option:

from django_downloadview import ObjectDownloadView

from demoproject.object.models import Document

deserialized_basename_view = ObjectDownloadView.as_view(
model=Document,
basename_field=’basename’)

Note: basename could have been a model’s property instead of a CharField.

See details below for a full list of options.

API reference

class django_downloadview.views.object.ObjectDownloadView(**kwargs)
Bases: django.views.generic.detail.SingleObjectMixin,
django_downloadview.views.base.BaseDownloadView

Serve file fields from models.

12 Chapter 3. Contents

http://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin

django-downloadview Documentation, Release 1.5

This class extends SingleObjectMixin, so you can use its arguments to target the instance to operate on:
slug, slug_kwarg, model, queryset...

In addition to SingleObjectMixin arguments, you can set arguments related to the file to be downloaded:

•file_field;

•basename_field;

•encoding_field;

•mime_type_field;

•charset_field;

•modification_time_field;

•size_field.

file_field is the main one. Other arguments are provided for convenience, in case your model holds some
(deserialized) metadata about the file, such as its basename, its modification time, its MIME type... These fields
may be particularly handy if your file storage is not the local filesystem.

file_field = ‘file’
Name of the model’s attribute which contains the file to be streamed. Typically the name of a FileField.

basename_field = None
Optional name of the model’s attribute which contains the basename.

encoding_field = None
Optional name of the model’s attribute which contains the encoding.

mime_type_field = None
Optional name of the model’s attribute which contains the MIME type.

charset_field = None
Optional name of the model’s attribute which contains the charset.

modification_time_field = None
Optional name of the model’s attribute which contains the modification

size_field = None
Optional name of the model’s attribute which contains the size.

get_file()
Return FieldFile instance.

The file wrapper is model’s field specified as file_field. It is typically a FieldFile or subclass.

Raises FileNotFound if instance’s field is empty.

Additional attributes are set on the file wrapper if encoding, mime_type, charset,
modification_time or size are configured.

get_basename()
Return client-side filename.

get(request, *args, **kwargs)

3.4.2 StorageDownloadView

StorageDownloadView serves files given a storage and a path.

Use this view when you manage files in a storage (which is a good practice), unrelated to a model.

3.4. Setup views 13

http://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin
http://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin
http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.fields.files.FieldFile
http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.fields.files.FieldFile

django-downloadview Documentation, Release 1.5

Simple example

Given a storage:

from django.core.files.storage import FileSystemStorage

storage = FileSystemStorage()

Setup a view to stream files in storage:

from django_downloadview import StorageDownloadView

static_path = StorageDownloadView.as_view(storage=storage)

The view accepts a path argument you can setup either in as_view or via URLconfs:

from django.conf.urls import patterns, url

from demoproject.storage import views

urlpatterns = patterns(
’’,
url(r’^static-path/(?P<path>[a-zA-Z0-9_-]+\.[a-zA-Z0-9]{1,4})$’,

views.static_path,
name=’static_path’),

)

Computing path dynamically

Override the StorageDownloadView.get_path() method to adapt path resolution to your needs.

As an example, here is the same view as above, but the path is converted to uppercase:

from django_downloadview import StorageDownloadView

class DynamicStorageDownloadView(StorageDownloadView):
"""Serve file of storage by path.upper()."""
def get_path(self):

"""Return uppercase path."""
return super(DynamicStorageDownloadView, self).get_path().upper()

dynamic_path = DynamicStorageDownloadView.as_view(storage=storage)

API reference

class django_downloadview.views.storage.StorageDownloadView(**kwargs)
Bases: django_downloadview.views.path.PathDownloadView

Serve a file using storage and filename.

storage = <django.core.files.storage.DefaultStorage object at 0x2f4eb90>
Storage the file to serve belongs to.

14 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

path = None
Path to the file to serve relative to storage.

get_path()
Return path of the file to serve, relative to storage.

Default implementation simply returns view’s path attribute.

Override this method if you want custom implementation.

get_file()
Return StorageFile instance.

3.4.3 PathDownloadView

PathDownloadView serves file given a path on local filesystem.

Use this view whenever you just have a path, outside storage or model.

Warning: Take care of path validation, especially if you compute paths from user input: an attacker may be able
to download files from arbitrary locations. In most cases, you should consider managing files in storages, because
they implement default security mechanisms.

Simple example

Setup a view to stream files given path:

import os

from django_downloadview import PathDownloadView

Let’s initialize some fixtures.
app_dir = os.path.dirname(os.path.abspath(__file__))
project_dir = os.path.dirname(app_dir)
fixtures_dir = os.path.join(project_dir, ’fixtures’)
#: Path to a text file that says ’Hello world!’.
hello_world_path = os.path.join(fixtures_dir, ’hello-world.txt’)

#: Serve ‘‘fixtures/hello-world.txt‘‘ file.
static_path = PathDownloadView.as_view(path=hello_world_path)

Computing path dynamically

Override the PathDownloadView.get_path() method to adapt path resolution to your needs:

import os

from django_downloadview import PathDownloadView

Let’s initialize some fixtures.
app_dir = os.path.dirname(os.path.abspath(__file__))
project_dir = os.path.dirname(app_dir)
fixtures_dir = os.path.join(project_dir, ’fixtures’)

3.4. Setup views 15

django-downloadview Documentation, Release 1.5

class DynamicPathDownloadView(PathDownloadView):
"""Serve file in ‘‘settings.MEDIA_ROOT‘‘.

.. warning::

Make sure to prevent "../" in path via URL patterns.

.. note::

This particular setup would be easier to perform with
:class:‘StorageDownloadView‘

"""
def get_path(self):

"""Return path inside fixtures directory."""
Get path from URL resolvers or as_view kwarg.
relative_path = super(DynamicPathDownloadView, self).get_path()
Make it absolute.
absolute_path = os.path.join(fixtures_dir, relative_path)
return absolute_path

dynamic_path = DynamicPathDownloadView.as_view()

The view accepts a path argument you can setup either in as_view or via URLconfs:

from django.conf.urls import patterns, url

from demoproject.path import views

urlpatterns = patterns(
’’,
url(r’^dynamic-path/(?P<path>[a-zA-Z0-9_-]+\.[a-zA-Z0-9]{1,4})$’,

views.dynamic_path,
name=’dynamic_path’),

)

API reference

class django_downloadview.views.path.PathDownloadView(**kwargs)
Bases: django_downloadview.views.base.BaseDownloadView

Serve a file using filename.

path = None
Server-side name (including path) of the file to serve.

Filename is supposed to be an absolute filename of a file located on the local filesystem.

path_url_kwarg = ‘path’
Name of the URL argument that contains path.

get_path()
Return actual path of the file to serve.

Default implementation simply returns view’s path.

16 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

Override this method if you want custom implementation. As an example, path could be relative and
your custom get_path() implementation makes it absolute.

get_file()
Use path to return wrapper around file to serve.

3.4.4 HTTPDownloadView

HTTPDownloadView serves a file given an URL., i.e. it acts like a proxy.

This view is particularly handy when:

• the client does not have access to the file resource, while your Django server does.

• the client does trust your server, your server trusts a third-party, you do not want to bother the client with the
third-party.

Simple example

Setup a view to stream files given URL:

from django_downloadview import HTTPDownloadView

class SimpleURLDownloadView(HTTPDownloadView):
def get_url(self):

"""Return URL of hello-world.txt file on GitHub."""
return ’https://raw.github.com/benoitbryon/django-downloadview’ \

’/b7f660c5e3f37d918b106b02c5af7a887acc0111’ \
’/demo/demoproject/download/fixtures/hello-world.txt’

simple_url = SimpleURLDownloadView.as_view()

API reference

class django_downloadview.views.http.HTTPDownloadView(**kwargs)
Bases: django_downloadview.views.base.BaseDownloadView

Proxy files that live on remote servers.

url = u’‘
URL to download (the one we are proxying).

request_kwargs = {}
Additional keyword arguments for request handler.

get_request_factory()
Return request factory to perform actual HTTP request.

Default implementation returns requests.get() callable.

get_request_kwargs()
Return keyword arguments for use with get_request_factory().

Default implementation returns request_kwargs.

3.4. Setup views 17

http://docs.python-requests.org/en/latest/api/#requests.get

django-downloadview Documentation, Release 1.5

get_url()
Return remote file URL (the one we are proxying).

Default implementation returns url.

get_file()
Return wrapper which has an url attribute.

3.4.5 VirtualDownloadView

VirtualDownloadView serves files that do not live on disk. Use it when you want to stream a file which content
is dynamically generated or which lives in memory.

It is all about overriding VirtualDownloadView.get_file()method so that it returns a suitable file wrapper...

Note: Current implementation does not support reverse-proxy optimizations, because there is no place reverse-proxy
can load files from after Django exited.

Serve text (string or unicode) or bytes

Let’s consider you build text dynamically, as a bytes or string or unicode object. Serve it with Django’s builtin
ContentFile wrapper:

from django.core.files.base import ContentFile

from django_downloadview import VirtualDownloadView

class TextDownloadView(VirtualDownloadView):
def get_file(self):

"""Return :class:‘django.core.files.base.ContentFile‘ object."""
return ContentFile(u"Hello world!\n", name=’hello-world.txt’)

Serve StringIO

StringIO object lives in memory. Let’s wrap it in some download view via VirtualFile:

from StringIO import StringIO

from django_downloadview import VirtualDownloadView
from django_downloadview import VirtualFile

class StringIODownloadView(VirtualDownloadView):
def get_file(self):

"""Return wrapper on ‘‘StringIO‘‘ object."""
file_obj = StringIO(u"Hello world!\n")
return VirtualFile(file_obj, name=’hello-world.txt’)

Stream generated content

Let’s consider you have a generator function (yield) or an iterator object (__iter__()):

18 Chapter 3. Contents

http://docs.djangoproject.com/en/1.5/ref/files/file/#django.core.files.base.ContentFile
http://docs.python.org/2.7/library/stringio.html#StringIO.StringIO

django-downloadview Documentation, Release 1.5

def generate_hello():
yield u’Hello ’
yield u’world!’
yield u’\n’

Stream generated content using VirtualDownloadView, VirtualFile and StringIteratorIO:

from django_downloadview import VirtualDownloadView
from django_downloadview import VirtualFile
from django_downloadview import StringIteratorIO

class GeneratedDownloadView(VirtualDownloadView):
def get_file(self):

"""Return wrapper on ‘‘StringIteratorIO‘‘ object."""
file_obj = StringIteratorIO(generate_hello())
return VirtualFile(file_obj, name=’hello-world.txt’)

API reference

class django_downloadview.views.virtual.VirtualDownloadView(**kwargs)
Bases: django_downloadview.views.base.BaseDownloadView

Serve not-on-disk or generated-on-the-fly file.

Override the get_file() method to customize file wrapper.

was_modified_since(file_instance, since)
Delegate to file wrapper’s was_modified_since, or return True.

This is the implementation of an edge case: when files are generated on the fly, we cannot guess whether
they have been modified or not. If the file wrapper implements was_modified_since()method, then
we trust it. Otherwise it is safer to suppose that the file has been modified.

This behaviour prevents file size to be computed on the Django side. Because computing file size means
iterating over all the file contents, and we want to avoid that whenever possible. As an example, it could
reduce all the benefits of working with dynamic file generators... which is a major feature of virtual files.

3.4.6 Make your own view

DownloadMixin

The django_downloadview.views.DownloadMixin class is not a view. It is a base class which you can
inherit of to create custom download views.

DownloadMixin is a base of BaseDownloadView, which itself is a base of all other django_downloadview’s builtin
views.

class django_downloadview.views.base.DownloadMixin
Bases: object

Placeholders and base implementation to create file download views.

Note: This class does not inherit from django.views.generic.base.View.

The get_file() method is a placeholder subclasses must implement. Base implementation raises
NotImplementedError.

3.4. Setup views 19

http://docs.djangoproject.com/en/1.5/ref/class-based-views/base/#django.views.generic.base.View

django-downloadview Documentation, Release 1.5

Other methods provide a base implementation that use the file wrapper returned by get_file().

response_class
Response class, to be used in render_to_response().

alias of DownloadResponse

attachment = True
Whether to return the response as attachment or not.

basename = None
Client-side filename, if only file is returned as attachment.

mimetype = None
File’s mime type. If None (the default), then the file’s mime type will be guessed via mimetypes.

encoding = None
File’s encoding. If None (the default), then the file’s encoding will be guessed via mimetypes.

get_file()
Return a file wrapper instance.

Raises FileNotFound if file does not exist.

get_basename()
Return basename.

Override this method if you need more dynamic basename.

get_mimetype()
Return mimetype.

Override this method if you need more dynamic mime type.

get_encoding()
Return encoding.

Override this method if you need more dynamic encoding.

was_modified_since(file_instance, since)
Return True if file_instance was modified after since.

Uses file wrapper’s was_modified_since if available, with value of since as positional argument.

Else, fallbacks to default implementation, which uses django.views.static.was_modified_since().

Django’s was_modified_since function needs a datetime and a size. It is passed modified_time
and size attributes from file wrapper. If file wrapper does not support these attributes
(AttributeError or NotImplementedError is raised), then the file is considered as modified
and True is returned.

not_modified_response(*response_args, **response_kwargs)
Return django.http.HttpResponseNotModified instance.

download_response(*response_args, **response_kwargs)
Return DownloadResponse.

file_not_found_response()
Raise Http404.

render_to_response(*response_args, **response_kwargs)
Return “download” response (if everything is ok).

Return file_not_found_response() if file does not exist.

20 Chapter 3. Contents

http://docs.python.org/2.7/library/mimetypes.html#mimetypes
http://docs.python.org/2.7/library/mimetypes.html#mimetypes
http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.HttpResponseNotModified

django-downloadview Documentation, Release 1.5

Respects the “HTTP_IF_MODIFIED_SINCE” header if any. In that case, uses
was_modified_since() and not_modified_response().

Else, uses download_response() to return a download response.

BaseDownloadView

The django_downloadview.views.BaseDownloadView class is a base class to create download views. It
inherits DownloadMixin and django.views.generic.base.View.

The only thing it does is to implement get: it triggers DownloadMixin’s render_to_response.

class django_downloadview.views.base.BaseDownloadView(**kwargs)
Bases: django_downloadview.views.base.DownloadMixin, django.views.generic.base.View

A base DownloadMixin that implements get().

get(request, *args, **kwargs)
Handle GET requests: stream a file.

Handling http not modified responses

Sometimes, you know the latest date and time the content was generated at, and you know a new request would
generate exactly the same content. In such a case, you should implement was_modified_since() in your view.

Note: Default was_modified_since() implementation trusts file wrapper’s was_modified_since if any.
Else (if calling was_modified_since() raises NotImplementedError or AttributeError) it returns
True, i.e. it assumes the file was modified.

As an example, the download views above always generate “Hello world!”... so, if the client already downloaded it,
we can safely return some HTTP “304 Not Modified” response:

from django.core.files.base import ContentFile
from django_downloadview import VirtualDownloadView

class TextDownloadView(VirtualDownloadView):
def get_file(self):

"""Return :class:‘django.core.files.base.ContentFile‘ object."""
return ContentFile(u"Hello world!", name=’hello-world.txt’)

def was_modified_since(self, file_instance, since):
return False # Never modified, always u"Hello world!".

3.5 Optimize streaming

Some reverse proxies allow applications to delegate actual download to the proxy:

• with Django, manage permissions, generate files...

• let the reverse proxy serve the file.

As a result, you get increased performance: reverse proxies are more efficient than Django at serving static files.

3.5. Optimize streaming 21

http://docs.djangoproject.com/en/1.5/ref/class-based-views/base/#django.views.generic.base.View
http://docs.djangoproject.com/en/1.5/ref/class-based-views/base/#django.views.generic.base.View

django-downloadview Documentation, Release 1.5

3.5.1 Supported features grid

Supported features depend on backend. Given the file you want to stream, the backend may or may not be able to
handle it:

View / File Nginx Apache Lighttpd
PathDownloadView Yes, local filesystem. Yes, local filesystem. Yes, local filesystem.
StorageDownloadView Yes, local and remote. Yes, local filesystem. Yes, local filesystem.
ObjectDownloadView Yes, local and remote. Yes, local filesystem. Yes, local filesystem.
HTTPDownloadView Yes. No. No.
VirtualDownloadView No. No. No.

As an example, Nginx X-Accel handles URL for internal redirects, so it can manage HTTPFile; whereas Apache
X-Sendfile handles absolute path, so it can only deal with files on local filesystem.

There are currently no optimizations to stream in-memory files, since they only live on Django side, i.e. they do not
persist after Django returned a response. Note: there is a feature request about “local cache” for streamed files 4.

3.5.2 How does it work?

View return some DownloadResponse instance, which itself carries a file wrapper.

django-downloadview provides response middlewares and decorators that are able to capture DownloadResponse
instances and convert them to ProxiedDownloadResponse.

The ProxiedDownloadResponse is specific to the reverse-proxy (backend): it tells the reverse proxy to stream
some resource.

Note: The feature is inspired by Django’s TemplateResponse

3.5.3 Available optimizations

Here are optimizations builtin django_downloadview:

Nginx

If you serve Django behind Nginx, then you can delegate the file streaming to Nginx and get increased performance:

• lower resources used by Python/Django workers ;

• faster download.

See Nginx X-accel documentation 5 for details.

Known limitations

• Nginx needs access to the resource by URL (proxy) or path (location).

• Thus VirtualFile and any generated files cannot be streamed by Nginx.

4 https://github.com/benoitbryon/django-downloadview/issues/70
5 http://wiki.nginx.org/X-accel

22 Chapter 3. Contents

https://github.com/benoitbryon/django-downloadview/issues/70
http://docs.djangoproject.com/en/1.5/ref/template-response/#module-django.template.response
http://wiki.nginx.org/X-accel
https://github.com/benoitbryon/django-downloadview/issues/70
http://wiki.nginx.org/X-accel

django-downloadview Documentation, Release 1.5

Given a view

Let’s consider the following view:

import os

from django.conf import settings
from django.core.files.storage import FileSystemStorage

from django_downloadview import StorageDownloadView

storage_dir = os.path.join(settings.MEDIA_ROOT, ’nginx’)
storage = FileSystemStorage(location=storage_dir,

base_url=’’.join([settings.MEDIA_URL, ’nginx/’]))

optimized_by_middleware = StorageDownloadView.as_view(storage=storage,
path=’hello-world.txt’)

What is important here is that the files will have an url property implemented by storage. Let’s setup an optimization
rule based on that URL.

Note: It is generally easier to setup rules based on URL rather than based on name in filesystem. This is because
path is generally relative to storage, whereas URL usually contains some storage identifier, i.e. it is easier to target a
specific location by URL rather than by filesystem name.

Setup XAccelRedirect middlewares

Make sure django_downloadview.SmartDownloadMiddleware is in MIDDLEWARE_CLASSES of your
Django settings.

Example:

MIDDLEWARE_CLASSES = [
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’django_downloadview.SmartDownloadMiddleware’

]

Then set django_downloadview.nginx.XAccelRedirectMiddleware as
DOWNLOADVIEW_BACKEND:

DOWNLOADVIEW_BACKEND = ’django_downloadview.nginx.XAccelRedirectMiddleware’

Then register as many DOWNLOADVIEW_RULES as you wish:

DOWNLOADVIEW_RULES = [
{

’source_url’: ’/media/nginx/’,
’destination_url’: ’/nginx-optimized-by-middleware/’,

},
]

3.5. Optimize streaming 23

django-downloadview Documentation, Release 1.5

Each item in DOWNLOADVIEW_RULES is a dictionary of keyword arguments passed to the middleware fac-
tory. In the example above, we capture responses by source_url and convert them to internal redirects to
destination_url.

class django_downloadview.nginx.middlewares.XAccelRedirectMiddleware(source_dir=None,
source_url=None,
destina-
tion_url=None,
ex-
pires=None,
with_buffering=None,
limit_rate=None,
me-
dia_root=None,
me-
dia_url=None)

Bases: django_downloadview.middlewares.ProxiedDownloadMiddleware

Configurable middleware, for use in decorators or in global middlewares.

Standard Django middlewares are configured globally via settings. Instances of this class
are to be configured individually. It makes it possible to use this class as the factory in
django_downloadview.decorators.DownloadDecorator.

get_redirect_url(response)
Return redirect URL for file wrapped into response.

is_download_response(response)
Return True for DownloadResponse, except for “virtual” files.

This implementation cannot handle files that live in memory or which are to be dynamically iterated over.
So, we capture only responses whose file attribute have either an URL or a file name.

process_response(request, response)
Call process_download_response() if response is download.

process_download_response(request, response)
Replace DownloadResponse instances by NginxDownloadResponse ones.

Per-view setup with x_accel_redirect decorator

Middlewares should be enough for most use cases, but you may want per-view configuration. For nginx, there is
x_accel_redirect:

django_downloadview.nginx.decorators.x_accel_redirect(view_func, *args, **kwargs)
Apply XAccelRedirectMiddleware to view_func.

Proxies (*args, **kwargs) to middleware constructor.

As an example:

import os

from django.conf import settings
from django.core.files.storage import FileSystemStorage

from django_downloadview import StorageDownloadView
from django_downloadview.nginx import x_accel_redirect

24 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

optimized_by_decorator = x_accel_redirect(
StorageDownloadView.as_view(storage=storage, path=’hello-world.txt’),
source_url=storage.base_url,
destination_url=’/nginx-optimized-by-decorator/’)

Test responses with assert_x_accel_redirect

Use assert_x_accel_redirect() function as a shortcut in your tests.

import os

from django.core.files.base import ContentFile
from django.core.urlresolvers import reverse
import django.test

from django_downloadview.nginx import assert_x_accel_redirect

from demoproject.nginx.views import storage, storage_dir

def setup_file():
if not os.path.exists(storage_dir):

os.makedirs(storage_dir)
storage.save(’hello-world.txt’, ContentFile(u’Hello world!\n’))

class OptimizedByMiddlewareTestCase(django.test.TestCase):
def test_response(self):

"""’nginx:optimized_by_middleware’ returns X-Accel response."""
setup_file()
url = reverse(’nginx:optimized_by_middleware’)
response = self.client.get(url)
assert_x_accel_redirect(

self,
response,
content_type="text/plain; charset=utf-8",
charset="utf-8",
basename="hello-world.txt",
redirect_url="/nginx-optimized-by-middleware/hello-world.txt",
expires=None,
with_buffering=None,
limit_rate=None)

class OptimizedByDecoratorTestCase(django.test.TestCase):
def test_response(self):

"""’nginx:optimized_by_decorator’ returns X-Accel response."""
setup_file()
url = reverse(’nginx:optimized_by_decorator’)
response = self.client.get(url)
assert_x_accel_redirect(

self,
response,
content_type="text/plain; charset=utf-8",
charset="utf-8",
basename="hello-world.txt",
redirect_url="/nginx-optimized-by-decorator/hello-world.txt",

3.5. Optimize streaming 25

django-downloadview Documentation, Release 1.5

expires=None,
with_buffering=None,
limit_rate=None)

django_downloadview.nginx.tests.assert_x_accel_redirect(test_case, response, **as-
sertions)

Make test_case assert that response is a XAccelRedirectResponse.

Optional assertions dictionary can be used to check additional items:

•basename: the basename of the file in the response.

•content_type: the value of “Content-Type” header.

•redirect_url: the value of “X-Accel-Redirect” header.

•charset: the value of X-Accel-Charset header.

•with_buffering: the value of X-Accel-Buffering header. If False, then makes sure that the
header disables buffering. If None, then makes sure that the header is not set.

•expires: the value of X-Accel-Expires header. If False, then makes sure that the header disables
expiration. If None, then makes sure that the header is not set.

•limit_rate: the value of X-Accel-Limit-Rate header. If False, then makes sure that the header
disables limit rate. If None, then makes sure that the header is not set.

The tests above assert the Django part is OK. Now let’s configure nginx.

Setup Nginx

See Nginx X-accel documentation 1 for details.

Here is what you could have in /etc/nginx/sites-available/default:

charset utf-8;

Django-powered service.
upstream frontend {

server 127.0.0.1:8000 fail_timeout=0;
}

server {
listen 80 default;

File-download proxy.
#
Will serve /var/www/files/myfile.tar.gz when passed URI
like /optimized-download/myfile.tar.gz
#
See http://wiki.nginx.org/X-accel
and https://django-downloadview.readthedocs.org
#
location /proxied-download {

internal;
Location to files on disk.
alias /var/www/files/;

}

Proxy to Django-powered frontend.
location / {

26 Chapter 3. Contents

http://wiki.nginx.org/X-accel

django-downloadview Documentation, Release 1.5

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_pass http://frontend;

}
}

... where specific configuration is the location /optimized-download section.

Note: /proxied-download has the internal flag, so this location is not available for the client, i.e. users are
not able to download files via /optimized-download/<filename>.

Assert everything goes fine with healthchecks

Healthchecks are the best way to check the complete setup.

Common issues

Unknown charset "utf-8" to override Add charset utf-8; in your nginx configuration file.

open() "path/to/something" failed (2: No such file or directory) Check your
settings.NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_ROOT in Django configuration VS alias in nginx
configuration: in a standard configuration, they should be equal.

References

Apache

If you serve Django behind Apache, then you can delegate the file streaming to Apache and get increased performance:

• lower resources used by Python/Django workers ;

• faster download.

See Apache mod_xsendfile documentation 6 for details.

Known limitations

• Apache needs access to the resource by path on local filesystem.

• Thus only files that live on local filesystem can be streamed by Apache.

Given a view

Let’s consider the following view:

6 https://tn123.org/mod_xsendfile/

3.5. Optimize streaming 27

https://tn123.org/mod_xsendfile/
https://tn123.org/mod_xsendfile/

django-downloadview Documentation, Release 1.5

import os

from django.conf import settings
from django.core.files.storage import FileSystemStorage

from django_downloadview import StorageDownloadView

storage_dir = os.path.join(settings.MEDIA_ROOT, ’apache’)
storage = FileSystemStorage(location=storage_dir,

base_url=’’.join([settings.MEDIA_URL, ’apache/’]))

optimized_by_middleware = StorageDownloadView.as_view(storage=storage,
path=’hello-world.txt’)

What is important here is that the files will have an url property implemented by storage. Let’s setup an optimization
rule based on that URL.

Note: It is generally easier to setup rules based on URL rather than based on name in filesystem. This is because
path is generally relative to storage, whereas URL usually contains some storage identifier, i.e. it is easier to target a
specific location by URL rather than by filesystem name.

Setup XSendfile middlewares

Make sure django_downloadview.SmartDownloadMiddleware is in MIDDLEWARE_CLASSES of your
Django settings.

Example:

MIDDLEWARE_CLASSES = [
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’django_downloadview.SmartDownloadMiddleware’

]

Then set django_downloadview.apache.XSendfileMiddleware as DOWNLOADVIEW_BACKEND:

DOWNLOADVIEW_BACKEND = ’django_downloadview.apache.XSendfileMiddleware’

Then register as many DOWNLOADVIEW_RULES as you wish:

DOWNLOADVIEW_RULES = [
{

’source_url’: ’/media/apache/’,
’destination_dir’: ’/apache-optimized-by-middleware/’,

},
]

Each item in DOWNLOADVIEW_RULES is a dictionary of keyword arguments passed to the middleware fac-
tory. In the example above, we capture responses by source_url and convert them to internal redirects to
destination_dir.

28 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

class django_downloadview.apache.middlewares.XSendfileMiddleware(source_dir=None,
source_url=None,
destina-
tion_dir=None)

Bases: django_downloadview.middlewares.ProxiedDownloadMiddleware

Configurable middleware, for use in decorators or in global middlewares.

Standard Django middlewares are configured globally via settings. Instances of this class
are to be configured individually. It makes it possible to use this class as the factory in
django_downloadview.decorators.DownloadDecorator.

process_download_response(request, response)
Replace DownloadResponse instances by XSendfileResponse ones.

get_redirect_url(response)
Return redirect URL for file wrapped into response.

is_download_response(response)
Return True for DownloadResponse, except for “virtual” files.

This implementation cannot handle files that live in memory or which are to be dynamically iterated over.
So, we capture only responses whose file attribute have either an URL or a file name.

process_response(request, response)
Call process_download_response() if response is download.

Per-view setup with x_sendfile decorator

Middlewares should be enough for most use cases, but you may want per-view configuration. For Apache, there is
x_sendfile:

django_downloadview.apache.decorators.x_sendfile(view_func, *args, **kwargs)
Apply XSendfileMiddleware to view_func.

Proxies (*args, **kwargs) to middleware constructor.

As an example:

import os

from django.conf import settings
from django.core.files.storage import FileSystemStorage

from django_downloadview import StorageDownloadView
from django_downloadview.apache import x_sendfile

optimized_by_decorator = x_sendfile(
StorageDownloadView.as_view(storage=storage, path=’hello-world.txt’),
source_url=storage.base_url,
destination_dir=’/apache-optimized-by-decorator/’)

Test responses with assert_x_sendfile

Use assert_x_sendfile() function as a shortcut in your tests.

3.5. Optimize streaming 29

django-downloadview Documentation, Release 1.5

import os

from django.core.files.base import ContentFile
from django.core.urlresolvers import reverse
import django.test

from django_downloadview.apache import assert_x_sendfile

from demoproject.apache.views import storage, storage_dir

def setup_file():
if not os.path.exists(storage_dir):

os.makedirs(storage_dir)
storage.save(’hello-world.txt’, ContentFile(u’Hello world!\n’))

class OptimizedByMiddlewareTestCase(django.test.TestCase):
def test_response(self):

"""’apache:optimized_by_middleware’ returns X-Sendfile response."""
setup_file()
url = reverse(’apache:optimized_by_middleware’)
response = self.client.get(url)
assert_x_sendfile(

self,
response,
content_type="text/plain; charset=utf-8",
basename="hello-world.txt",
file_path="/apache-optimized-by-middleware/hello-world.txt")

class OptimizedByDecoratorTestCase(django.test.TestCase):
def test_response(self):

"""’apache:optimized_by_decorator’ returns X-Sendfile response."""
setup_file()
url = reverse(’apache:optimized_by_decorator’)
response = self.client.get(url)
assert_x_sendfile(

self,
response,
content_type="text/plain; charset=utf-8",
basename="hello-world.txt",
file_path="/apache-optimized-by-decorator/hello-world.txt")

django_downloadview.apache.tests.assert_x_sendfile(test_case, response, **assertions)
Make test_case assert that response is a XSendfileResponse.

Optional assertions dictionary can be used to check additional items:

•basename: the basename of the file in the response.

•content_type: the value of “Content-Type” header.

•file_path: the value of “X-Sendfile” header.

The tests above assert the Django part is OK. Now let’s configure Apache.

30 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

Setup Apache

See Apache mod_xsendfile documentation 1 for details.

Assert everything goes fine with healthchecks

Healthchecks are the best way to check the complete setup.

References

Lighttpd

If you serve Django behind Lighttpd, then you can delegate the file streaming to Lighttpd and get increased perfor-
mance:

• lower resources used by Python/Django workers ;

• faster download.

See Lighttpd X-Sendfile documentation 7 for details.

Note: Currently, django_downloadview supports X-Sendfile, but not X-Sendfile2. If you need
X-Sendfile2 or know how to handle it, check X-Sendfile2 feature request on django_downloadview’s bugtracker
8.

Known limitations

• Lighttpd needs access to the resource by path on local filesystem.

• Thus only files that live on local filesystem can be streamed by Lighttpd.

Given a view

Let’s consider the following view:

import os

from django.conf import settings
from django.core.files.storage import FileSystemStorage

from django_downloadview import StorageDownloadView

storage_dir = os.path.join(settings.MEDIA_ROOT, ’lighttpd’)
storage = FileSystemStorage(location=storage_dir,

base_url=’’.join([settings.MEDIA_URL, ’lighttpd/’]))

optimized_by_middleware = StorageDownloadView.as_view(storage=storage,
path=’hello-world.txt’)

7 http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
8 https://github.com/benoitbryon/django-downloadview/issues/67

3.5. Optimize streaming 31

https://tn123.org/mod_xsendfile/
http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
https://github.com/benoitbryon/django-downloadview/issues/67
http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
https://github.com/benoitbryon/django-downloadview/issues/67

django-downloadview Documentation, Release 1.5

What is important here is that the files will have an url property implemented by storage. Let’s setup an optimization
rule based on that URL.

Note: It is generally easier to setup rules based on URL rather than based on name in filesystem. This is because
path is generally relative to storage, whereas URL usually contains some storage identifier, i.e. it is easier to target a
specific location by URL rather than by filesystem name.

Setup XSendfile middlewares

Make sure django_downloadview.SmartDownloadMiddleware is in MIDDLEWARE_CLASSES of your
Django settings.

Example:

MIDDLEWARE_CLASSES = [
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’django_downloadview.SmartDownloadMiddleware’

]

Then set django_downloadview.lighttpd.XSendfileMiddleware as DOWNLOADVIEW_BACKEND:

DOWNLOADVIEW_BACKEND = ’django_downloadview.lighttpd.XSendfileMiddleware’

Then register as many DOWNLOADVIEW_RULES as you wish:

DOWNLOADVIEW_RULES = [
{

’source_url’: ’/media/lighttpd/’,
’destination_dir’: ’/lighttpd-optimized-by-middleware/’,

},
]

Each item in DOWNLOADVIEW_RULES is a dictionary of keyword arguments passed to the middleware fac-
tory. In the example above, we capture responses by source_url and convert them to internal redirects to
destination_dir.

class django_downloadview.lighttpd.middlewares.XSendfileMiddleware(source_dir=None,
source_url=None,
destina-
tion_dir=None)

Bases: django_downloadview.middlewares.ProxiedDownloadMiddleware

Configurable middleware, for use in decorators or in global middlewares.

Standard Django middlewares are configured globally via settings. Instances of this class
are to be configured individually. It makes it possible to use this class as the factory in
django_downloadview.decorators.DownloadDecorator.

process_download_response(request, response)
Replace DownloadResponse instances by XSendfileResponse ones.

get_redirect_url(response)
Return redirect URL for file wrapped into response.

32 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

is_download_response(response)
Return True for DownloadResponse, except for “virtual” files.

This implementation cannot handle files that live in memory or which are to be dynamically iterated over.
So, we capture only responses whose file attribute have either an URL or a file name.

process_response(request, response)
Call process_download_response() if response is download.

Per-view setup with x_sendfile decorator

Middlewares should be enough for most use cases, but you may want per-view configuration. For Lighttpd, there is
x_sendfile:

django_downloadview.lighttpd.decorators.x_sendfile(view_func, *args, **kwargs)
Apply XSendfileMiddleware to view_func.

Proxies (*args, **kwargs) to middleware constructor.

As an example:

import os

from django.conf import settings
from django.core.files.storage import FileSystemStorage

from django_downloadview import StorageDownloadView
from django_downloadview.lighttpd import x_sendfile

optimized_by_decorator = x_sendfile(
StorageDownloadView.as_view(storage=storage, path=’hello-world.txt’),
source_url=storage.base_url,
destination_dir=’/lighttpd-optimized-by-decorator/’)

Test responses with assert_x_sendfile

Use assert_x_sendfile() function as a shortcut in your tests.

import os

from django.core.files.base import ContentFile
from django.core.urlresolvers import reverse
import django.test

from django_downloadview.lighttpd import assert_x_sendfile

from demoproject.lighttpd.views import storage, storage_dir

def setup_file():
if not os.path.exists(storage_dir):

os.makedirs(storage_dir)
storage.save(’hello-world.txt’, ContentFile(u’Hello world!\n’))

class OptimizedByMiddlewareTestCase(django.test.TestCase):

3.5. Optimize streaming 33

django-downloadview Documentation, Release 1.5

def test_response(self):
"""’lighttpd:optimized_by_middleware’ returns X-Sendfile response."""
setup_file()
url = reverse(’lighttpd:optimized_by_middleware’)
response = self.client.get(url)
assert_x_sendfile(

self,
response,
content_type="text/plain; charset=utf-8",
basename="hello-world.txt",
file_path="/lighttpd-optimized-by-middleware/hello-world.txt")

class OptimizedByDecoratorTestCase(django.test.TestCase):
def test_response(self):

"""’lighttpd:optimized_by_decorator’ returns X-Sendfile response."""
setup_file()
url = reverse(’lighttpd:optimized_by_decorator’)
response = self.client.get(url)
assert_x_sendfile(

self,
response,
content_type="text/plain; charset=utf-8",
basename="hello-world.txt",
file_path="/lighttpd-optimized-by-decorator/hello-world.txt")

django_downloadview.lighttpd.tests.assert_x_sendfile(test_case, response, **asser-
tions)

Make test_case assert that response is a XSendfileResponse.

Optional assertions dictionary can be used to check additional items:

•basename: the basename of the file in the response.

•content_type: the value of “Content-Type” header.

•file_path: the value of “X-Sendfile” header.

The tests above assert the Django part is OK. Now let’s configure Lighttpd.

Setup Lighttpd

See Lighttpd X-Sendfile documentation 1 for details.

Assert everything goes fine with healthchecks

Healthchecks are the best way to check the complete setup.

References

Note: If you need support for additional optimizations, tell us 9!

9 https://github.com/benoitbryon/django-downloadview/issues?labels=optimizations

34 Chapter 3. Contents

http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
https://github.com/benoitbryon/django-downloadview/issues?labels=optimizations
https://github.com/benoitbryon/django-downloadview/issues?labels=optimizations

django-downloadview Documentation, Release 1.5

Notes & references

3.6 Write tests

django_downloadview embeds test utilities:

• temporary_media_root()

• assert_download_response()

• setup_view()

• assert_x_accel_redirect()

3.6.1 temporary_media_root

django_downloadview.test.temporary_media_root(**kwargs)
Temporarily override settings.MEDIA_ROOT with a temporary directory.

The temporary directory is automatically created and destroyed.

Use this function as a context manager:

>>> from django_downloadview.test import temporary_media_root
>>> from django.conf import settings
>>> global_media_root = settings.MEDIA_ROOT
>>> with temporary_media_root():
... global_media_root == settings.MEDIA_ROOT
False
>>> global_media_root == settings.MEDIA_ROOT
True

Or as a decorator:

>>> @temporary_media_root()
... def use_temporary_media_root():
... return settings.MEDIA_ROOT
>>> tmp_media_root = use_temporary_media_root()
>>> global_media_root == tmp_media_root
False
>>> global_media_root == settings.MEDIA_ROOT
True

3.6.2 assert_download_response

django_downloadview.test.assert_download_response(test_case, response, **assertions)
Make test_case assert that response meets assertions.

Optional assertions dictionary can be used to check additional items:

•basename: the basename of the file in the response.

•content_type: the value of “Content-Type” header.

•mime_type: the MIME type part of “Content-Type” header (without charset).

•content: the contents of the file.

•attachment: whether the file is returned as attachment or not.

3.6. Write tests 35

django-downloadview Documentation, Release 1.5

Examples, related to StorageDownloadView demo:

from django.core.files.base import ContentFile
from django.core.urlresolvers import reverse
import django.test

from django_downloadview import assert_download_response, temporary_media_root

from demoproject.storage import views

Fixtures.
file_content = ’Hello world!\n’

def setup_file(path):
views.storage.save(path, ContentFile(file_content))

class StaticPathTestCase(django.test.TestCase):
@temporary_media_root()
def test_download_response(self):

"""’storage:static_path’ streams file by path."""
setup_file(’1.txt’)
url = reverse(’storage:static_path’, kwargs={’path’: ’1.txt’})
response = self.client.get(url)
assert_download_response(self,

response,
content=file_content,
basename=’1.txt’,
mime_type=’text/plain’)

class DynamicPathIntegrationTestCase(django.test.TestCase):
"""Integration tests around ‘‘storage:dynamic_path‘‘ URL."""
@temporary_media_root()
def test_download_response(self):

"""’dynamic_path’ streams file by generated path.

As we use ‘‘self.client‘‘, this test involves the whole Django stack,
including settings, middlewares, decorators... So we need to setup a
file, the storage, and an URL.

This test actually asserts the URL ‘‘storage:dynamic_path‘‘ streams a
file in storage.

"""
setup_file(’1.TXT’)
url = reverse(’storage:dynamic_path’, kwargs={’path’: ’1.txt’})
response = self.client.get(url)
assert_download_response(self,

response,
content=file_content,
basename=’1.TXT’,
mime_type=’text/plain’)

36 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

3.6.3 setup_view

django_downloadview.test.setup_view(view, request, *args, **kwargs)
Mimic as_view(), but returns view instance.

Use this function to get view instances on which you can run unit tests, by testing specific methods.

This is an early implementation of https://code.djangoproject.com/ticket/20456

view A view instance, such as TemplateView(template_name=’dummy.html’). Initialization ar-
guments are the same you would pass to as_view().

request A request object, typically built with RequestFactory.

args and kwargs “URLconf” positional and keyword arguments, the same you would pass to reverse().

Example, related to StorageDownloadView demo:

import unittest

from django_downloadview import setup_view

from demoproject.storage import views

class DynamicPathUnitTestCase(unittest.TestCase):
"""Unit tests around ‘‘views.DynamicStorageDownloadView‘‘."""
def test_get_path(self):

"""DynamicStorageDownloadView.get_path() returns uppercase path.

Uses :func:‘~django_downloadview.test.setup_view‘ to target only
overriden methods.

This test does not involve URLconf, middlewares or decorators. It is
fast. It has clear scope. It does not assert ‘‘storage:dynamic_path‘‘
URL works. It targets only custom ‘‘DynamicStorageDownloadView‘‘ class.

"""
view = setup_view(views.DynamicStorageDownloadView(),

django.test.RequestFactory().get(’/fake-url’),
path=’dummy path’)

path = view.get_path()
self.assertEqual(path, ’DUMMY PATH’)

3.7 Write healthchecks

In the previous testing topic, you made sure the views and middlewares work as expected... within a test environment.

One common issue when deploying in production is that the reverse-proxy’s configuration does not fit. You cannot
check that within test environment.

Healthchecks are made to diagnose issues in live (production) environments.

3.7.1 Introducing healthchecks

Healthchecks (sometimes called “smoke tests” or “diagnosis”) are assertions you run on a live (typically production)
service, as opposed to fake/mock service used during tests (unit, integration, functional).

3.7. Write healthchecks 37

https://code.djangoproject.com/ticket/20456
http://docs.djangoproject.com/en/1.5/topics/testing/advanced/#django.test.client.RequestFactory
http://docs.djangoproject.com/en/1.5/ref/urlresolvers/#django.core.urlresolvers.reverse

django-downloadview Documentation, Release 1.5

See hospital 10 and django-doctor 11 projects about writing healthchecks for Python and Django.

3.7.2 Typical healthchecks

Here is a typical healthcheck setup for download views with reverse-proxy optimizations.

When you run this healthcheck suite, you get a good overview if a problem occurs: you can compare expected results
and learn which part (Django, reverse-proxy or remote storage) is guilty.

Note: In the examples below, we use “localhost” and ports “80” (reverse-proxy) or “8000” (Django). Adapt them to
your configuration.

Check storage

Put a dummy file on the storage Django uses.

The write a healthcheck that asserts you can read the dummy file from storage.

On success, you know remote storage is ok.

Issues may involve permissions or communications (remote storage).

Note: This healthcheck may be outside Django.

Check Django VS storage

Implement a download view dedicated to healthchecks. It is typically a public (but not referenced) view that streams
a dummy file from real storage. Let’s say you register it as /healthcheck-utils/download/ URL.

Write a healthcheck that asserts GET http://localhost:8000/healtcheck-utils/download/ (notice
the 8000 port: local Django server) returns the expected reverse-proxy response (X-Accel, X-Sendfile...).

On success, you know there is no configuration issue on the Django side.

Check reverse proxy VS storage

Write a location in your reverse-proxy’s configuration that proxy-pass to a dummy file on storage.

Write a healthcheck that asserts this location returns the expected dummy file.

On success, you know the reverse proxy can serve files from storage.

Check them all together

We just checked all parts separately, so let’s make sure they can work together. Configure the reverse-
proxy so that /healthcheck-utils/download/ is proxied to Django. Then write a healthcheck that asserts GET
http://localhost:80/healthcheck-utils/download (notice the 80 port: reverse-proxy server) returns
the expected dummy file.

On success, you know everything is ok.
10 https://pypi.python.org/pypi/hospital
11 https://pypi.python.org/pypi/django-doctor

38 Chapter 3. Contents

https://pypi.python.org/pypi/hospital
https://pypi.python.org/pypi/django-doctor
https://pypi.python.org/pypi/hospital
https://pypi.python.org/pypi/django-doctor

django-downloadview Documentation, Release 1.5

On failure, there is an issue in the X-Accel/X-Sendfile configuration.

Note: This last healthcheck should be the first one to run, i.e. if it passes, others should pass too. The others are
useful when this one fails.

Notes & references

3.8 File wrappers

A view return DownloadResponse which itself carries a file wrapper. Here are file wrappers distributed by Django
and django-downloadview.

3.8.1 Django’s builtins

Django itself provides some file wrappers 12 you can use within django-downloadview:

• django.core.files.File wraps a file that live on local filesystem, initialized with a path.
django-downloadview uses this wrapper in PathDownloadView.

• django.db.models.fields.files.FieldFile wraps a file that is managed in a model.
django-downloadview uses this wrapper in ObjectDownloadView.

• django.core.files.base.ContentFile wraps a bytes, string or unicode object. You may use it with
VirtualDownloadView.

3.8.2 django-downloadview builtins

django-downloadview implements additional file wrappers:

• StorageFile wraps a file that is managed via a storage (but not necessarily via a model). StorageDownload-
View uses this wrapper.

• HTTPFile wraps a file that lives at some (remote) location, initialized with an URL. HTTPDownloadView uses
this wrapper.

• VirtualFile wraps a file that lives in memory, i.e. built as a string. This is a convenient wrapper to use in
VirtualDownloadView subclasses.

3.8.3 API reference

StorageFile

class django_downloadview.files.StorageFile(storage, name, file=None)
Bases: django.core.files.base.File

A file in a Django storage.

This class looks like django.db.models.fields.files.FieldFile, but unrelated to model in-
stance.

12 https://docs.djangoproject.com/en/1.5/ref/files/file/

3.8. File wrappers 39

https://docs.djangoproject.com/en/1.5/ref/files/file/
http://docs.djangoproject.com/en/1.5/ref/files/file/#django.core.files.File
http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.fields.files.FieldFile
http://docs.djangoproject.com/en/1.5/ref/files/file/#django.core.files.base.ContentFile
http://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.fields.files.FieldFile
https://docs.djangoproject.com/en/1.5/ref/files/file/

django-downloadview Documentation, Release 1.5

file
Required by django.core.files.utils.FileProxy.

open(mode=’rb’)
Retrieves the specified file from storage and return open() result.

Proxy to self.storage.open(self.name, mode).

save(content)
Saves new content to the file.

Proxy to self.storage.save(self.name).

The content should be a proper File object, ready to be read from the beginning.

path
Return a local filesystem path which is suitable for open().

Proxy to self.storage.path(self.name).

May raise NotImplementedError if storage doesn’t support file access with Python’s built-in open() func-
tion

delete()
Delete the specified file from the storage system.

Proxy to self.storage.delete(self.name).

exists()
Return True if file already exists in the storage system.

If False, then the name is available for a new file.

size
Return the total size, in bytes, of the file.

Proxy to self.storage.size(self.name).

url
Return an absolute URL where the file’s contents can be accessed.

Proxy to self.storage.url(self.name).

accessed_time
Return the last accessed time (as datetime object) of the file.

Proxy to self.storage.accessed_time(self.name).

created_time
Return the creation time (as datetime object) of the file.

Proxy to self.storage.created_time(self.name).

modified_time
Return the last modification time (as datetime object) of the file.

Proxy to self.storage.modified_time(self.name).

HTTPFile

class django_downloadview.files.HTTPFile(request_factory=<function get at 0x2c44758>,
url=’‘, name=u’‘, **kwargs)

Bases: django.core.files.base.File

Wrapper for files that live on remote HTTP servers.

40 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

Acts as a proxy.

Uses https://pypi.python.org/pypi/requests.

Always sets “stream=True” in requests kwargs.

request

file

size
Return the total size, in bytes, of the file.

Reads response’s “content-length” header.

VirtualFile

class django_downloadview.files.VirtualFile(file=None, name=u’‘, url=’‘, size=None)
Bases: django.core.files.base.File

Wrapper for files that live in memory.

size

Notes & references

3.9 Responses

Views return DownloadResponse.

Middlewares (and decorators) are given the opportunity to capture responses and convert them to
ProxiedDownloadResponse.

3.9.1 DownloadResponse

class django_downloadview.response.DownloadResponse(file_instance, attachment=True,
basename=None, sta-
tus=200, content_type=None,
file_mimetype=None,
file_encoding=None)

Bases: django.http.response.StreamingHttpResponse

File download response (Django serves file, client downloads it).

This is a specialization of django.http.StreamingHttpResponse where streaming_content is
a file wrapper.

Constructor differs a bit from HttpResponse:

file_instance A file wrapper instance, such as File.

attachement Boolean. Whether to return the file as attachment or not. Affects Content-Disposition
header.

basename Unicode. Client-side name of the file to stream. Only used if attachment is True. Affects
Content-Disposition header.

status HTTP status code.

3.9. Responses 41

https://pypi.python.org/pypi/requests
http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse
http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse.streaming_content

django-downloadview Documentation, Release 1.5

content_type Value for Content-Type header. If None, then mime-type and encoding will be popu-
lated by the response (default implementation uses mimetypes, based on file name).

file_mimetype Value for file’s mimetype. If None (the default), then the file’s mimetype will be guessed
via Python’s mimetypes. See get_mime_type().

file_encoding Value for file’s encoding. If None (the default), then the file’s encoding will be guessed via
Python’s mimetypes. See get_encoding().

Here are some highlights to understand internal mechanisms and motivations:

•Let’s start by quoting PEP 3333 (WSGI specification):

For large files, or for specialized uses of HTTP streaming, applications will usually return an
iterator (often a generator-iterator) that produces the output in a block-by-block fashion.

•Django WSGI handler (application implementation) return response object.

•django.http.HttpResponse and subclasses are iterators.

•In StreamingHttpResponse, the __iter__() implementation proxies to
streaming_content.

•In DownloadResponse and subclasses, streaming_content is a file wrapper. File wrapper is
itself an iterator over actual file content, and it also encapsulates access to file attributes (size, name, ...).

default_headers
Return dictionary of automatically-computed headers.

Uses an internal _default_headers cache. Default values are computed if only cache hasn’t been set.

Content-Disposition header is encoded according to RFC 5987. See also
http://stackoverflow.com/questions/93551/how-to-encode-the-filename-parameter-of-content-disposition-
header-in-http.

items()
Return iterable of (header, value).

This method is called by http handlers just before WSGI’s start_response() is called... but it is not called
by django.test.ClientHandler! :’(

get_basename()
Return basename.

get_content_type()
Return a suitable “Content-Type” header for self.file.

get_mime_type()
Return mime-type of the file.

get_encoding()
Return encoding of the file to serve.

get_charset()
Return the charset of the file to serve.

3.9.2 ProxiedDownloadResponse

class django_downloadview.response.ProxiedDownloadResponse(content=’‘, *args,
**kwargs)

Bases: django.http.response.HttpResponse

Base class for internal redirect download responses.

42 Chapter 3. Contents

http://docs.python.org/2.7/library/mimetypes.html#mimetypes
http://docs.python.org/2.7/library/mimetypes.html#mimetypes
http://www.python.org/dev/peps/pep-3333
https://github.com/django/django/blob/fd1279a44df3b9a837453cd79fd0fbcf81bae39d/django/core/handlers/wsgi.py#L268
http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.HttpResponse
http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse
http://docs.python.org/2.7/library/stdtypes.html#container.__iter__
http://docs.djangoproject.com/en/1.5/ref/request-response/#django.http.StreamingHttpResponse.streaming_content
http://tools.ietf.org/html/rfc5987
http://stackoverflow.com/questions/93551/how-to-encode-the-filename-parameter-of-content-disposition-header-in-http
http://stackoverflow.com/questions/93551/how-to-encode-the-filename-parameter-of-content-disposition-header-in-http

django-downloadview Documentation, Release 1.5

This base class makes it possible to identify several types of specific responses such as
XAccelRedirectResponse.

3.10 Migrating from django-sendfile

django-sendfile 13 is a wrapper around web-server specific methods for sending files to web clients. See Alternatives
and related projects for details about this project.

django-downloadview provides a port of django-sendfile’s main function.

Warning: django-downloadview can replace the following django-sendfile‘s backends: nginx, xsendfile,
simple. But it currently cannot replace mod_wsgi backend.

Here are tips to migrate from django-sendfile to django-downloadview...

1. In your project’s and apps dependencies, replace django-sendfile by django-downloadview.

2. In your Python scripts, replace import sendfile and from sendfile by import
django_downloadview and from django_downloadview. You get something like from
django_downloadview import sendfile

3. Adapt your settings as explained in Configure. Pay attention to:

• replace sendfile by django_downloadview in INSTALLED_APPS.

• replace SENDFILE_BACKEND by DOWNLOADVIEW_BACKEND

• setup DOWNLOADVIEW_RULES. It replaces SENDFILE_ROOT and can do more.

• register django_downloadview.SmartDownloadMiddleware in MIDDLEWARE_CLASSES.

4. Change your tests if any. You can no longer use django-senfile‘s development backend. See Write tests for
django-downloadview‘s toolkit.

5. Here you are! ... or please report your story/bug at django-downloadview’s bugtracker 14 ;)

3.10.1 API reference

django_downloadview.shortcuts.sendfile(request, filename, attachment=False, attach-
ment_filename=None, mimetype=None, encod-
ing=None)

Port of django-sendfile’s API in django-downloadview.

Instantiates a PathDownloadView to stream the file by filename.

References

3.11 Demo project

Demo folder in project’s repository 15 contains a Django project to illustrate django-downloadview usage.

13 http://pypi.python.org/pypi/django-sendfile
14 https://github.com/benoitbryon/django-downloadview/issues
15 https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/

3.10. Migrating from django-sendfile 43

http://pypi.python.org/pypi/django-sendfile
https://github.com/benoitbryon/django-downloadview/issues
https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/
http://pypi.python.org/pypi/django-sendfile
https://github.com/benoitbryon/django-downloadview/issues
https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/

django-downloadview Documentation, Release 1.5

3.11.1 Documentation includes code from the demo

Almost every example in the documentation comes from the demo:

• discover examples in the documentation;

• browse related code and tests in demo project.

Examples in documentation are tested via demo project!

3.11.2 Browse demo code online

See demo folder in project’s repository 1.

3.11.3 Deploy the demo

System requirements:

• Python 16 version 2.7, available as python command.

Note: You may use Virtualenv 17 to make sure the active python is the right one.

• make and wget to use the provided Makefile.

Execute:

git clone git@github.com:benoitbryon/django-downloadview.git
cd django-downloadview/
make runserver

It installs and runs the demo server on localhost, port 8000. So have a look at http://localhost:8000/

Note: If you cannot execute the Makefile, read it and adapt the few commands it contains to your needs.

Browse and use demo/demoproject/ as a sandbox.

3.11.4 References

3.12 About django-downloadview

3.12.1 Vision

django-downloadview tries to simplify the development of “download” views using Django 18 framework. It provides
generic views that cover most common patterns.

Django is not the best solution to serve files: reverse proxies are far more efficient. django-downloadview makes it
easy to implement this best-practice.

Tests matter: django-downloadview provides tools to test download views and optimizations.

16 http://python.org
17 http://virtualenv.org
18 https://django-project.com

44 Chapter 3. Contents

https://github.com/benoitbryon/django-downloadview/tree/master/demo/demoproject/
http://python.org
http://virtualenv.org
http://localhost:8000/
https://django-project.com
http://python.org
http://virtualenv.org
https://django-project.com

django-downloadview Documentation, Release 1.5

Notes & references

See Also:

• Alternatives and related projects

• roadmap

3.12.2 Alternatives and related projects

This document presents other projects that provide similar or complementary functionalities. It focuses on differences
with django-downloadview.

There is a comparison grid on djangopackages.com: https://www.djangopackages.com/grids/g/file-streaming/.

Here are additional highlights...

Django’s static file view

django.contrib.staticfiles provides a view to serve files 19. It is simple and quite naive by design: it is meant for
development, not for production. See Django ticket #2131 20: advanced file streaming is left to third-party applications.

django-downloadview is such a third-party application.

django-sendfile

django-sendfile 21 is a wrapper around web-server specific methods for sending files to web clients.

Note: django_downloadview.shortcuts.sendfile() is a port of django-sendfile‘s main function. See
Migrating from django-sendfile for details.

django-senfile‘s main focus is simplicity: API is made of a single sendfile() function you call inside your
views:

from sendfile import sendfile

def hello_world(request):
"""Send ’hello-world.pdf’ file as a response."""
return sendfile(request, ’/path/to/hello-world.pdf’)

The download response type depends on the chosen backend, which could be Django, Lighttpd’s X-Sendfile, Nginx’s
X-Accel... depending your settings:

SENDFILE_BACKEND = ’sendfile.backends.nginx’ # sendfile() will return
X-Accel responses.

Additional settings for sendfile’s nginx backend.
SENDFILE_ROOT = ’/path/to’
SENDFILE_URL = ’/proxied-download’

Here are main differences between the two projects:

19 https://docs.djangoproject.com/en/1.6/ref/contrib/staticfiles/#static-file-development-view
20 https://code.djangoproject.com/ticket/2131
21 http://pypi.python.org/pypi/django-sendfile

3.12. About django-downloadview 45

https://github.com/benoitbryon/django-downloadview/issues/milestones
https://www.djangopackages.com/grids/g/file-streaming/
https://docs.djangoproject.com/en/1.6/ref/contrib/staticfiles/#static-file-development-view
https://code.djangoproject.com/ticket/2131
http://pypi.python.org/pypi/django-sendfile
https://docs.djangoproject.com/en/1.6/ref/contrib/staticfiles/#static-file-development-view
https://code.djangoproject.com/ticket/2131
http://pypi.python.org/pypi/django-sendfile

django-downloadview Documentation, Release 1.5

• django-sendfile supports only files that live on local filesystem (i.e. where os.path.exists returns
True). Whereas django-downloadview allows you to serve or proxy files stored in various locations,
including remote ones.

• django-sendfile uses a single global configuration (i.e. settings.SENDFILE_ROOT),
thus optimizations are limited to a single root folder. Whereas django-downloadview‘s
DownloadDispatcherMiddleware supports multiple configurations.

References

3.12.3 License

Copyright (c) 2012-2013, Benoît Bryon. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of django-downloadview nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

3.12.4 Authors & contributors

Maintainer: Benoît Bryon <benoit@marmelune.net>

Original code by Novapost team:

• Nicolas Tobo <https://github.com/nicolastobo>

• Lauréline Guérin <https://github.com/zebuline>

• Gregory Tappero <https://github.com/coulix>

• Rémy Hubscher <remy.hubscher@novapost.fr>

• Benoît Bryon <benoit@marmelune.net>

Developers: https://github.com/benoitbryon/django-downloadview/graphs/contributors

46 Chapter 3. Contents

mailto:benoit@marmelune.net
http://www.novapost.fr
https://github.com/nicolastobo
https://github.com/zebuline
https://github.com/coulix
mailto:remy.hubscher@novapost.fr
mailto:benoit@marmelune.net
https://github.com/benoitbryon/django-downloadview/graphs/contributors

django-downloadview Documentation, Release 1.5

3.12.5 Changelog

This document describes changes between past releases. For information about future releases, check milestones 22

and Vision.

1.5 (2013-11-29)

X-Sendfile support and helpers to migrate for django-sendfile.

• Feature #2 - Introduced support of Lighttpd’s x-Sendfile.

• Feature #36 - Introduced support of Apache’s mod_xsendfile.

• Feature #41 - django_downloadview.sendfile is a port of django-sendfile‘s sendfile function. The
documentation contains notes about migrating from django-sendfile to django-downloadview.

1.4 (2013-11-24)

Bugfixes and documentation features.

• Bugfix #43 - ObjectDownloadView returns HTTP 404 if model instance’s file field is empty (was HTTP
500).

• Bugfix #7 - Special characters in file names (Content-Disposition header) are urlencoded. An US-ASCII
fallback is also provided.

• Feature #10 - django-downloadview is registered on djangopackages.com.

• Feature #65 - INSTALL documentation shows “known good set” (KGS) of versions, i.e. versions that have been
used in test environment.

1.3 (2013-11-08)

Big refactoring around middleware configuration, API readability and documentation.

• Bugfix #57 - PathDownloadView opens files in binary mode (was text mode).

• Bugfix #48 - Fixed basename assertion in assert_download_response: checks
Content-Disposition header.

• Bugfix #49 - Fixed content assertion in assert_download_response: checks only response’s
streaming_content attribute.

• Bugfix #60 - VirtualFile.__iter__ uses force_bytes() to support both “text-mode” and “binary-
mode” content. See https://code.djangoproject.com/ticket/21321

• Feature #50 - Introduced django_downloadview.DownloadDispatcherMiddleware that iterates
over a list of configurable download middlewares. Allows to plug several download middlewares with different
configurations.

This middleware is mostly dedicated to internal usage. It is used by SmartDownloadMiddleware described
below.

• Feature #42 - Documentation shows how to stream generated content (yield). Introduced
django_downloadview.StringIteratorIO.

• Refactoring #51 - Dropped support of Python 2.6

22 https://github.com/benoitbryon/django-downloadview/issues/milestones

3.12. About django-downloadview 47

https://github.com/benoitbryon/django-downloadview/issues/milestones
https://code.djangoproject.com/ticket/21321
https://github.com/benoitbryon/django-downloadview/issues/milestones

django-downloadview Documentation, Release 1.5

• Refactoring #25 - Introduced django_downloadview.SmartDownloadMiddleware which allows to
setup multiple optimization rules for one backend.

Deprecates the following settings related to previous single-and-global middleware:

– NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_ROOT

– NGINX_DOWNLOAD_MIDDLEWARE_MEDIA_URL

– NGINX_DOWNLOAD_MIDDLEWARE_EXPIRES

– NGINX_DOWNLOAD_MIDDLEWARE_WITH_BUFFERING

– NGINX_DOWNLOAD_MIDDLEWARE_LIMIT_RATE

• Refactoring #52 - ObjectDownloadView now inherits from SingleObjectMixin and BaseDownloadView (was
DownloadMixin and BaseDetailView). Simplified DownloadMixin.render_to_response() signature.

• Refactoring #40 - Documentation includes examples from demo project.

• Refactoring #39 - Documentation focuses on usage, rather than API. Improved narrative documentation.

• Refactoring #53 - Added base classes in django_downloadview.middlewares, such as
ProxiedDownloadMiddleware.

• Refactoring #54 - Expose most Python API directly in django_downloadview package. Simplifies import
statements in client applications. Splitted nginx module in a package.

• Added unit tests, improved code coverage.

1.2 (2013-05-28)

Bugfixes and documentation improvements.

• Bugfix #26 - Prevented computation of virtual file’s size, unless the file wrapper implements
was_modified_since() method.

• Bugfix #34 - Improved support of files that do not implement modification time.

• Bugfix #35 - Fixed README conversion from reStructuredText to HTML (PyPI).

1.1 (2013-04-11)

Various improvements. Contains backward incompatible changes.

• Added HTTPDownloadView to proxy to arbitrary URL.

• Added VirtualDownloadView to support files living in memory.

• Using StreamingHttpResponse introduced with Django 1.5. Makes Django 1.5 a requirement!

• Added django_downloadview.test.assert_download_response utility.

• Download views and response now use file wrappers. Most logic around file attributes, formerly in views,
moved to wrappers.

• Replaced DownloadView by PathDownloadView and StorageDownloadView. Use the right one depending on
the use case.

48 Chapter 3. Contents

django-downloadview Documentation, Release 1.5

1.0 (2012-12-04)

• Introduced optimizations for Nginx X-Accel: a middleware and a decorator

• Introduced generic views: DownloadView and ObjectDownloadView

• Initialized project

Notes & references

3.13 Contributing to the project

This document provides guidelines for people who want to contribute to the project.

3.13.1 Create tickets

Please use the bugtracker 23 before starting some work:

• check if the bug or feature request has already been filed. It may have been answered too!

• else create a new ticket.

• if you plan to contribute, tell us, so that we are given an opportunity to give feedback as soon as possible.

• Then, in your commit messages, reference the ticket with some refs #TICKET-ID syntax.

3.13.2 Fork and branch

• Work in forks and branches.

• Prefix your branch with the ticket ID corresponding to the issue. As an example, if you are working on ticket
#23 which is about contribute documentation, name your branch like 23-contribute-doc.

• If you work in a development branch and want to refresh it with changes from master, please rebase 24 or
merge-based rebase 25, i.e. don’t merge master.

3.13.3 Setup a development environment

System requirements:

• Python 26 version 2.7, available as python command

• Virtualenv 27 version >= 1.9.1, available as virtualenv command

• make and wget to use the provided Makefile.

Execute:

git clone git@github.com:benoitbryon/django-downloadview.git
cd django-downloadview/
make develop

23 https://github.com/benoitbryon/django-downloadview/issues
24 http://git-scm.com/book/en/Git-Branching-Rebasing
25 http://tech.novapost.fr/psycho-rebasing-en.html
26 http://python.org
27 http://virtualenv.org

3.13. Contributing to the project 49

https://github.com/benoitbryon/django-downloadview/issues
http://git-scm.com/book/en/Git-Branching-Rebasing
http://tech.novapost.fr/psycho-rebasing-en.html
http://python.org
http://virtualenv.org
https://github.com/benoitbryon/django-downloadview/issues
http://git-scm.com/book/en/Git-Branching-Rebasing
http://tech.novapost.fr/psycho-rebasing-en.html
http://python.org
http://virtualenv.org

django-downloadview Documentation, Release 1.5

If you cannot execute the Makefile, read it and adapt the few commands it contains to your needs.

3.13.4 The Makefile

A Makefile is provided to ease development. Use it to:

• setup the development environment: make develop

• update it, as an example, after a pull: make update

• run tests: make test

• build documentation: make documentation

The Makefile is intended to be a live reference for the development environment.

3.13.5 Demo project included

The Demo project is part of the tests. Maintain it along with code and documentation.

3.13.6 References

50 Chapter 3. Contents

Python Module Index

d
django_downloadview.files, ??
django_downloadview.views.http, ??
django_downloadview.views.object, ??
django_downloadview.views.path, ??
django_downloadview.views.storage, ??
django_downloadview.views.virtual, ??

51

